Skip to main content
Log in

Fermentation performance assessment of a genomically integrated xylose-utilizing recombinant of Zymomonas mobilis 39676

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In pH-controlled batch fermentations with pure sugar synthetic hardwood hemicellulose (1% [w/v] glucose and 4% xylose) and corn stover hydrolysate (8% glucose and 3.5% xylose) lacking acetic acid, the xyloseutilizing, tetracycline (Tc)-sensitive, genomically integrated variant of Zymomonas mobilis ATCC 39676 (designated strain C25) exhibited growth and fermentation performance that was inferior to National Renewable Energy Laboratory's first-generation, Tc-resistant, plasmid-bearing Zymomonas recombinants. With C25, xylose fermentation following glucose exhaustion wasmarkellyslower, and the ethanol yield (based on sugars consumed) was lower, owing primarily to an increase in lactic acid formation. There was an apparent increased sensitivity to acetic acid inhibition with C25 compared with recombinants 39676:pZB4L, CP4:pZB5, and ZM4:pZB5. However, strain C25 performed well in continous ferm entation with nutrient-rich synthetic corn stover medium over the dilution range 0.03–0.06/h, with a maximum provess ethanol yield at D=0.03/h of 0.46 g/g and a maximum ethanol productivity of 3 g/(L·h). With 0.35% (w/v) acetic acid in the medium, the process yield at D=0.04/h dropped to 0.32 g/g, and the maximum productivity decreased by 50% to 1.5 g/(L·h). Under the same operating conditions, rec Zm Zm 4:pZB5 performed better; however, the medium contained 20 mg/L of Tc to constantly maintain selective pressure. The absence of any need for antibiotics and antiboitic resistance genes makes the chromosomal integrant C25 more com patible with current regulatory specifications for biocatalysts in large-scale commercial operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lawford, G. R., Lavers, B. H., Good, D., Charley, R. C., Fein, J. E. and Lawford, H. G. (1982), in Proceedings of the International Symposium on Ethanol from Biomass, Duckworth, H., ed. Royal Society of Canada, Ottawa, Canada, pp. 482–507.

    Google Scholar 

  2. Lawford, H. G. (1987), US Patent 4,647,534.

  3. Lawford, H. G. (1988), in VII International Symposium on Alcohol Fuels, New Energy and Industrial Technology Development Organization, Tokyo, Japan, pp. 21–27.

  4. Lawford, H. (1988), in Canadian Power Alcohol Conference, Candlish, B., ed., Biomass Energy Institute, Winnipeg, Manitoba, Canada, pp. 245–251.

    Google Scholar 

  5. Lacis, L. S. and Lawford, H. G. (1989), in Bioenergy—Proceedings of the 7th Canadian Bioenergy R&D Seminar, Hogen, E., ed., NRC Canada, Ottawa, pp. 411–416.

    Google Scholar 

  6. Lawford, H. G. and Rousseau, J. D. (1991), in Energy from Biomass and Wates XV, Klass, D. L., ed., Institute Gas Technology, Chicago, pp. 583–622.

    Google Scholar 

  7. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995), Science 267, 240–243.

    Article  CAS  Google Scholar 

  8. Picataggio, S., Zhang, M., Eddy, C.K., Deanda, K., and Finkelstein, M. (1996), US Patent 5,514,583.

  9. Lawford, H. G., Rousseau, J. D., and McMillan, J. D. (1997), Appl. Biochem. Biotechnol. 63–65, 269–286.

    Article  Google Scholar 

  10. Lawford, H. G. and Rousseau, J. D. (1997), Appl. Biochem. Biotechnol. 63–65, 287–304.

    Google Scholar 

  11. Lawford, H. G. and Rousseau, J. D. (1998), Appl. Biochem. Biotechnol. 70–72, 161–172.

    Google Scholar 

  12. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1998), Appl. Biochem. Biotechnol. 70–72, 353–368.

    Google Scholar 

  13. Lawford, H. G., and Rousseau, J. D. (1999), Appl. Biochem. Biotechnol. 77–79, 235–249.

    Article  Google Scholar 

  14. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1999), Appl. Biochem. Biotechnol. 77–79, 191–204.

    Article  Google Scholar 

  15. Lawford, H. G. and Rousseau, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, 277–294.

    Article  Google Scholar 

  16. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, 295–310.

    Article  Google Scholar 

  17. Hinman, N. D., Wright, J. D., Hoadland, W., and Wyman, C. E. (1989), Appl. Biochem. Biotechnol. 20/21, 391–401.

    Google Scholar 

  18. Sprenger, G. A. (1993), J. Bacteriol. 27, 225–237.

    CAS  Google Scholar 

  19. Feldman, S. D., Sahm, H., and Sprenger, G. A. (1992), Appl. Microbiol. 38, 354–361.

    Google Scholar 

  20. Picataggio, S. K., Zhang, M. Eddy, C. K., Deanda, K., and Finkelstein, M., (1998), US Patent 5,726,053.

  21. Deanda, K. A., Eddy, C., Zhang, M., and Picataggio, S. (1996), Appl. Environ. Microbiol. 62, 4465–4470.

    CAS  Google Scholar 

  22. Zhang, M., Chou, Y.C., Lai, X. K., Milstrey, S., Danielson, N., Evans, K., Mohagheghi, A., and Finkelstein, M. (1999), 21st Symposium on Biotechnology for Fuels and Chemicals, Fort Collins, CO (abstract no. 2-16).

  23. Rogers, P. L., Joachimsthal, E. L., and Haggett, K. D. (1997), J. Australasian Biotechnol. 7, 304–309.

    CAS  Google Scholar 

  24. Joachimsthal, E., Haggett, K. D., and Rogers, P. L. (1999), Appl. Biochem. Biotechnol. 77–79, 147–157.

    Article  Google Scholar 

  25. Krishnan, M. S., Blanco, M., Shattuck, C. K. Nghiem, N. P., and Davison, B. H. (2000) Appl. Biochem. Biotechnol. 84–86, 525–542.

    Article  Google Scholar 

  26. Joachimsthal, E. L. and Rogers, P. L. (2000), Appl. Biochem. Biotechnol. 84–86, 343–356.

    Article  Google Scholar 

  27. Dennison, E. and Abbas, C. (2000), 22nd Symposium on Biotechnology for Fuels and Chemicals, Gatlinburg, TN (abstract no. 2-04), Humana, Totowa, NJ.

    Google Scholar 

  28. Ngheim, N. P., Krishnan, M. S., Davison, B. H., Jackson, A. N., and Cofer, T. M. (2000), 22nd Symposium on Biotechnology for Fuels and Chemicals, Gatlinburg, TN (abstract no. 3-25), Humana, Totowa, NJ.

    Google Scholar 

  29. Dowe, N., Newman, M. M., Mohagheghi, A., and McMillan, J. D. (2000), 22nd Symposium on Biotechnology for Fuels and Chemicals, Gatlinburg, TN (abstract no. 6-20), Humana, Totowa, NJ.

    Google Scholar 

  30. McMillan, J. D. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., ACS Symposium Series 566, American Chemical Society, Washington, DC, pp. 411–437.

    Google Scholar 

  31. Foody, B. F. (2000), 21st Symposium on Biotechnology for Fuelsand Chemicals, Fort Collins, CO (abstract no. 6-01), Humana, Totowa, NJ.

    Google Scholar 

  32. Lawford, H. G., Rousseau, J. D., and Tolan, J. S. (2000), 22nd Symposium on Biotechnology for Fuels and Chemicals, Gatlinburg, TN, Humana, Totowa, NJ.

    Google Scholar 

  33. Foody, B. F. and Tolan, J. S. (2000), 22nd Symposium on Biotechnology for Fuels and Chemicals, Gatlinburg, TN (abstract no. 6-07), Humana, Totowa, NJ.

    Google Scholar 

  34. Zhang, M., Chou, Y. C., Mohagheghi, A., Evans, K., Milstrev, S., Lai, X. K., and Finkelstein, M. (2000), 22nd Symposium on Biotechnology for Fuels and Chemicals, Gatlinnburg, TN (abstract no. 2-03), Humana, Totowa, NJ.

    Google Scholar 

  35. Zhang, M., Chou, Y.-C. Picataggio, S. K., and Finkelstein, M. (1998), US Patent 5,843,760.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh G. Lawford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawford, H.G., Rousseau, J.D. Fermentation performance assessment of a genomically integrated xylose-utilizing recombinant of Zymomonas mobilis 39676. Appl Biochem Biotechnol 91, 117–131 (2001). https://doi.org/10.1385/ABAB:91-93:1-9:117

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:91-93:1-9:117

Index Entries

Navigation