Skip to main content
Log in

Nuclear magnetic resonance studies of acetic acid inhibition of rec Zymomonas mobilis ZM4(pZB5)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The fermentation characteristics and effects of lignocelulosic toxic compounds on recombinant Zymomonas mobilis ZM4(pZB5), which is capable of converting both glucose and xylose to ethanol, and its parental strain, ZM4, were characterized using 13C and 31P nuclear magnetic resonance (NMR) in vivo. From the 31P NMR data, the levels of nucleoside triphosphates (NTP) of ZM(pZB5) using xylose were lower than those of glucose. This can be related to the intrinsically slower assimilation and/or metabolism of xylose compared to glucose and is evidence of a less energized state of ZM4(pZB5) cells during xylose fermentation. Acetic acid was shown to be strongly inhibitory to ZM4(pZB5) on xylose medium, with xylose utilization being completely inhibited at pH 5.0 or lower in the presence of 10.9 g/L of sodium acetate. From the 31P NMR results, the addition of sodium acetate caused decreased NTP and sugar phosphates, together with acidification of the cytoplasm. Intracellular deenergization and acidification appear to be the major mechanisms by which acetic acid exerts its toxic effects on this recombinant strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogers, P. L., Lee, K. J., and Tribe, D. E. (1979), Biotechnol. Lett. 1, 165–170.

    Article  CAS  Google Scholar 

  2. Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982), Adv. Biochem. Eng. 23, 37–84.

    Google Scholar 

  3. Doelle, H. W., Kirk, L., Crittendon, R., Toh, H., and Doelle, M. (1983), Crit. Rev. Biotechnol. 13, 57–98.

    Article  Google Scholar 

  4. Lawford, H. G. (1988), Appl. Biochem. Biotechnol. 17, 203–219.

    Article  CAS  Google Scholar 

  5. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. (1995), Science 67, 240–243.

    Article  Google Scholar 

  6. Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Hatzis, C. (1997), Appl. Biochem. Biotechnol. 67, 185–198.

    Article  CAS  Google Scholar 

  7. Lawford, H. G. and Rousseau, J. D. (1993), Appl. Biochem. Biotechnol. 30–40, 301–322.

    Article  Google Scholar 

  8. Lohmeier-Vogel, E. M., Mclntyre, D. D., Vogel, H. J. (1990), in Physiology of Immobilized Cells, de Bont, J. A. M., Visser, J., Mattiasson, B., and Tramper, J., eds., Elsevier Science, Amsterdam, pp. 661–676.

    Google Scholar 

  9. Taylor, K. B., Beck, M. J., Huang, D. H., and Sakai, T. T. (1990), J. Ind. Microbiol. 6, 29–41.

    Article  CAS  Google Scholar 

  10. Schoberth, S. M. and de Graaf, A. A. (1993), Anal. Biochem. 210, 123–128.

    Article  CAS  Google Scholar 

  11. Lohmeier-Vogel, E., Hahn-Hägerdal, B., and Vogel, H. J. (1995), Appl. Environ. Microbiol. 61, 1414–1419.

    CAS  Google Scholar 

  12. Lundberg, P., Harmsen, E., Ho, C., and Vogel, H. J. (1990), Anal. Biochem. 191, 193–222.

    Article  CAS  Google Scholar 

  13. Barrow, K. D., Collins, J. G., Norton, R. S., Rogers, P. L., and Smith, G. M. (1984), J. Biol. Chem. 259, 5711–5716.

    CAS  Google Scholar 

  14. Loureiro-Dias, M. and Santos, H. (1990), Arch. Microbiol. 153, 384–391.

    Article  CAS  Google Scholar 

  15. Strohhäcker, J., de Graaf, A. A., Schoberth, S. M., Wittig, R. M., and Sahm, H. (1993), Arch. Microbiol. 159, 484–490.

    Article  Google Scholar 

  16. Ugurbil, K., Shulman, R. G., and Brown, T. R. (1979), in Biological Applications of Magnetic Resonance, Shulman, R. G., eds., Academic, New York, pp. 537–589.

    Google Scholar 

  17. Maleszka, R. and Schneider, H. (1982), Appl. Environ. Microbiol. 44, 909–912.

    CAS  Google Scholar 

  18. Moyer, J. D. and Henderson, J. F. (1985), CRC Crit. Rev. Biochem. 19, 45–62.

    Article  CAS  Google Scholar 

  19. Joachimsthal, E., Haggett, K. D., and Rogers, P. L. (1999), Appl. Biochem. Biotechnol. 77–79, 147–157.

    Article  Google Scholar 

  20. Delgenes, J. P., Moletta, R., and Navarro, J. M. (1996), Enzyme Microbial Technol. 19, 220–225.

    Article  CAS  Google Scholar 

  21. Tran, A. V. and Chambers, R. P. (1985), Biotechnol. Lett. 7, 841–846.

    Article  CAS  Google Scholar 

  22. Joachimsthal, E., Haggett, K. D., Jang, J-H., and Rogers, P. L. (1998), Biotechnol. Lett. 20, 137–142.

    Article  CAS  Google Scholar 

  23. Lawford, H. G. and Rousseau, J. D. (1993), Appl. Biochem. Biotechnol. 39–40, 687–699.

    Article  Google Scholar 

  24. Lawford, H. G. and Rousseau, J. D. (1994), Appl. Biochem. Biotechnol. 45–46, 437–448.

    Article  Google Scholar 

  25. Mitchell, P. (1973), J. Bioenerget. 4, 63–91.

    Article  CAS  Google Scholar 

  26. Pampulha, M. E. and Lauriero, V. (1989), Biotechnol. Lett. 11, 269–274.

    Article  CAS  Google Scholar 

  27. Lohmeier-Vogel, E. M., Sopher, C. R., and Lee, H. (1998), J. Ind. Microbiol. Biotechnol. 20, 75–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Rogers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, I.S., Barrow, K.D. & Rogers, P.L. Nuclear magnetic resonance studies of acetic acid inhibition of rec Zymomonas mobilis ZM4(pZB5). Appl Biochem Biotechnol 84, 357–370 (2000). https://doi.org/10.1385/ABAB:84-86:1-9:357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:84-86:1-9:357

Index Entries

Navigation