Skip to main content
Log in

Continuous fermentation studies with xylose-utilizing recombinant Zymomonas mobilis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study examined the continuous cofermentation performance characteristics of a dilute-acid “prehydrolysate-adapted” recombinant Zymomonas 39676:pZB4L and builds on the pH-stat batch fermentations with this recombinant that we reported on last year. Substitution of yeast extract by 1% (w/v) corn steep liquor (CSL) (50% solids) and Mg (2 mM) did not alter the coferm entation performance. Using declared assumptions, the cost of using CSL and Mg was estimated to be 12.5c/gal of ethanol with a possibility of 50% cost reduction using fourfold less CSL with 0.1% diammonium phosphate. Because of competition for a common sugar transporter that exhibits a higher affinity for glucose, utilization of glucose was complete whereas xylose was always present in the chemostat effluent. The ethanol yield, based on sugar used, was 94% of theoretical maximum. Altering the sugar ratio of the synthetic dilute acid hardwood prehydrolysate did not appear to significantly change the pattern of xylose utilization. Using a criterion of 80% sugar utilization for determining the maximum dilution rate (D max), changing the composition of the feed from 4% xylose to 3%, and simultaneously increasing the glucose from 0.8 to 1.8% shifted D max from 0.07 to 0.08/h. With equal amounts of both sugars (2.5%), D max was 0.07/h. By comparison to a similar investigation with rec Zm CP4:pZB5 with a 4% equal mixture of xylose and glucose, we observed that at pH 5.0, the D max was 0.064/h and shifted to 0.084/h at pH 5.75. At a level of 0.4% (w/v) acetic acid in the CSL-based medium with 3% xylose and 1.8% glucose at pH 5.75, the D max for the adapted recombinant shifted from 0.08 to 0.048/h, and the corresponding maximum volumetric ethanol productivity decreased 45%, from 1.52 to 0.84 g/(L·h). Under these conditions of continuous culture, linear regression of a Pirt plot of the specific rate of sugar utilization vs D showed that 4 g/L of acetic acid did not affect the maximum growth yield (0.030 g dry cell mass/g sugar), but did increase the maintenance coefficient twofold, from 0.46 to 1.0 g of sugar/(g of cell·h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeffries, T. W. (1981), Biotechnol. Bioeng. Symp. 11, 315–324.

    CAS  Google Scholar 

  2. Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989), Appl. Biochem. Biotechnol. 20/21, 391–401.

    Google Scholar 

  3. McMillan, J. D. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., ACS Symposium Series 566, American Chemical Society, Washington, DC, pp. 411–437.

    Google Scholar 

  4. Hahn-Hägerdal, B., Hallborn, J., Jeppsson, H., Olsson, L., Skoog, K., and Walfridsson, M. (1993), in Bioconversion of Forest and Agricultural Plant Residues, Saddler, J. N., ed., C. A. B. International, Wallingford, UK, pp. 411–437.

    Google Scholar 

  5. Barbosa, M. de F. S., Beck, M. J., Fein, J. E., Potts, D., and Ingram, L. O. (1992), Appl. Environ. Microbiol. 58, 1382–1389.

    CAS  Google Scholar 

  6. Beall, D. S., Ingram, L. O., Ben-Bassat, A., Doran, J. B., Fowler, D. E., Hall, R. G., and Wood, B. E. (1992), Biotechnol Lett. 14, 857–862.

    Article  CAS  Google Scholar 

  7. Lawford, H. G. and Rousseau, J. D. (1993), Biotechnol. Lett. 15, 615–620.

    Article  CAS  Google Scholar 

  8. DiMarco, A. A. and Romano, A. (1985), Appl. Environ. Microbiol. 49, 151–157.

    CAS  Google Scholar 

  9. Parker, C., Barnell, W. O., Snoep, J. L., Ingram, L. O., and Conway, T. (1995), Mol. Microbiol. 15, 795–802.

    Article  CAS  Google Scholar 

  10. Rogers, P. L. and Lawford, H. G. (1999), 21st Symposium on Biotechnology for Fuels and Chemicals, May 2–6, Fort Collins, CO, Abstract 2-01.

  11. Booth, I. R. (1985), Microbiol. Rev. 49, 63–91.

    Google Scholar 

  12. Lawford, H. G., Rousseau, J. D., and McMillan, J. D. (1997), Appl. Biochem. Biotechnol. 63–65, 269–286.

    Google Scholar 

  13. Lawford, H. G. and Rousseau, J. D. (1998), Appl. Biochem. Biotechnol. 70–72, 161–172.

    Google Scholar 

  14. Joachimsthal, E., Haggett, K. D., Jang, J.-H., and Rogers, P. L. (1998), Biotechnol. Lett. 20, 137–142.

    Article  CAS  Google Scholar 

  15. McMillan, J. D. (1997), Renew. Energy 10, 295–302.

    Article  CAS  Google Scholar 

  16. McMillan, J. D., Newman, M. M., Templeton, D. W., and Mohagheghi, A. (1999), Appl. Biochem. Biotechnol. 77–79, 649–665.

    Article  Google Scholar 

  17. Picataggio, S. K., Zhang, M., Eddy, C. K., Deanda, K. A., and Finkelstein, M. (1996), US patent 5,514,583.

  18. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995), Science 267, 240–243.

    Article  CAS  Google Scholar 

  19. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1999), Appl. Biochem. Biotechnol. 77–79, 191–204.

    Article  Google Scholar 

  20. Joachimsthal, E., Haggett, K. D., and Rogers, P. L. (1999), Appl. Biochem. Biotechnol. 77–79, 147–158.

    Article  Google Scholar 

  21. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1998), Appl. Biochem. Biotechnol. 70–72, 353–368.

    Google Scholar 

  22. Pirt, S. J. (1975), in Principles of, Microbe and Cell Cultivation, Blackwell Scientific, London, pp. 66–68.

    Google Scholar 

  23. Nguyen, Q. A., Dickow, J. H., Duff, B. W., Farmer, J. D., Glassner, D. A., Ibsen, K. N., Ruth, M. F., Schell, D. J., Thompson, I. B., and Tucker, M. P. (1996), Bioresour. Technol. 58, 189–196.

    Article  CAS  Google Scholar 

  24. Lawford, H. G. and Rousseau, J. D. (1997), Appl. Biochem. Biotechnol. 63–65, 287–304.

    Article  Google Scholar 

  25. Goodman, A. E., Rogers, P. L., and Skotnicki, M. L. (1982), Appl. Environ. Microbiol. 44, 496–498.

    CAS  Google Scholar 

  26. von Sivers, M., Zacchi, G., Olsson, L., and Hahn-Hägerdal, B. (1994), Biotechnol. Prog. 10, 555–560.

    Article  Google Scholar 

  27. Rogers, P. L., Joachimsthal, E. L., and Haggett, K. D. (1997), J. Australasian Biotechnol. 7, 304–309.

    CAS  Google Scholar 

  28. Lawford, H. G. and Rousseau, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, this volume.

  29. Kompala, D., Ruth, M., and McMillan, J. D. (1999), 21st Symposium on Biotechnology for Fuels and Chemicals, May 2–6, Fort Collins, CO, Abstract 3-05.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh G. Lawford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawford, H.G., Rousseau, J.D., Mohagheghi, A. et al. Continuous fermentation studies with xylose-utilizing recombinant Zymomonas mobilis . Appl Biochem Biotechnol 84, 295–310 (2000). https://doi.org/10.1385/ABAB:84-86:1-9:295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:84-86:1-9:295

Index Entries

Navigation