Skip to main content
Log in

Comparative energetics of glucose and xylose metabolism in recombinant Zymomonas mobilis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant Zymomonas mobilis CP4:pZB5 was grown with pH control in batch and continuous modes with either glucose or xylose as the sole carbon and energy source. In batch cultures in which the ratio of the final cell mass concentration to the amount of sugar in the medium was constant (i.e., under conditions that promote “coupled growth”), maximum specific rates of glucose and xylose consumption were 8.5 and 2.1 g/(g of cell…h), respectively; maximum specific rates of ethanol production for glucose and xylose were 4.1 and 1.0 g/(g of cell…h), respectively; and average growth yields from glucose and xylose were 0.055 and 0.034 g of dry cell mass (DCM)/g of sugar respectively. The corresponding value of YATP for glucose and xylose was 9.9 and 5.1 g of DCM/mol of ATP, respectively. YATP for the wild-type culture CP4 with glucose was 10.4g of DCM/mol of ATP. For single substratechem ostat cultures in which the growth rate was varied as the dilution rate (D), the maximum or “true” growth yield (max Ya/s) was calculated from Pirt plots as the inverse of the slope of the best-fit linear regression for the specific sugar utilization rate as a function of D, and the “maintenance coefficient” (m) was determined as the y-axis intercept. For xylose, values of max Y s/s and m were 0.0417g of DCM/g of xylose (YATP=6.25) and 0.04g of, xylose/(g of cell…h), respectively. However, with glucose there was an observed deviation from linearity, and the data in the Pirt plot was best fit with a second-order polynomial in D. At D>0.1/h, YATP=8.71 and m=2.05g of glu/(g of cell…h) whereas at D<0.1/h, YATP=4.9g of DCM/mol of ATP and m=0.04g of glu/(g of cell…h). This observation provides evidence to question the validity of the unstructured growth model and the assumption that Pirt's maintenance coefficient is a constant that is in dependent of the growth rate. Collectively, these observations with individual sugars and the values assign ed to various growth and fermentation parameters will be useful in the development of models to predict the behavior of rec Zm in mixed substrate fermentations of the type associated with biomass-to-ethanol processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dia z-Ricci, J. C., Tsu, M., and Bailey, J. E. (1992), Biotechnol. Bioeng. 39, 59.

    Article  CAS  Google Scholar 

  2. Hill, P. W., Klapatch, T. R., and Lynd, L. R. (1993), Biotechnol. Bioeng. 42, 873–883.

    Article  CAS  Google Scholar 

  3. Kompala, D. S., Ramkrishna, D., Jansen, N. B., and Tsao, G. T. (1986), Biotechnol. Bioeng. 28, 1044–1055.

    Article  CAS  Google Scholar 

  4. Lawford, H. G. and Rousseau, J. D. (1995), Appl. Biochem. Biotechnol. 51/52, 179–195.

    CAS  Google Scholar 

  5. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995) Science 267 240–243.

    Article  CAS  Google Scholar 

  6. Picataggio, S. K., Zhang, M., Eddy, C. K., Deanda, K. A., and Finkelstein, M. (1996), US Patent 5,514,583.

  7. Lawford, H. G., Rousseau, J. D., and McMillan, J. D. (1997), Appl. Biochem. Biotechnol. 63–65, 269–286.

    Google Scholar 

  8. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1998), Appl. Biochem. Biotechnol. 70–72, 353–368.

    Article  Google Scholar 

  9. Lawford, H. G. and Rousseau, J. D. (1998), Appl. Biochem. Biotechnol. 70–72, 161–172.

    Google Scholar 

  10. Lawford, H. G. and Rousseau, J. D. (1999), Appl. Biochem. Biotechnol. 77–79, 235–250.

    Article  Google Scholar 

  11. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1999), Appl. Biochem. Biotechnol. 77–79, 191–204.

    Article  Google Scholar 

  12. Thauer, R. K., Jungermann, K., and Decker, K. (1977), Bacteriol. Rev. 41, 100–180.

    CAS  Google Scholar 

  13. Stouthamer, A. H. (1979), in International Reviews of Biochemistry— Microbial Biochemistry, vol. 21, Quayle, J. R., ed, University Park Press, Baltimore, pp. 1–47.

    Google Scholar 

  14. Batley, E. H. (1987), in Energetics of Microbial Growth, John Wiley & Sons, New York.

    Google Scholar 

  15. Pirt, J. S. (1975) in Principles of Microbe and Cell Cultivation, John Wiley & Sons, New York.

    Google Scholar 

  16. Bauchop T. and Elsden, S. R. (1960), J. Gen. Microbiol. 23, 457–469.

    CAS  Google Scholar 

  17. Stouthamer, A. H. (1969), in Methods in Microbiology, vol. 1, Norris, J. R. and Ribbons, D. W., eds., Academic, New York, pp. 629–663.

    Google Scholar 

  18. Stouthamer, A. H. (1977), in Microbial Energetics, 27th Symposium of the Society of General Microbiology, Haddock, B. A. and Hamilton, W. A., eds., Cambridge University Press, London, pp. 285–315.

    Google Scholar 

  19. Stouthamer, A. H. (1976), in Yield Studies in Microorganisms, Meadowfield Press, Dewbury, UK.

    Google Scholar 

  20. Roseman, S. (1969), J. Gen. Physiol. 54, 138–184.

    Article  Google Scholar 

  21. Lawford, H. G., and Ruggiero, A. (1990), Biotechnol. Appl. Biochem. 12, 206–211.

    CAS  Google Scholar 

  22. Stevnsborg, N. and Lawford, H. G. (1986), Appl. Microbiol. Biotechnol. 25, 106–115.

    CAS  Google Scholar 

  23. Nipkow, A., Sonnleiter, B., and Fiechter, A. (1985), Appl. Microbiol. Biotechnol. 21, 287–291.

    Article  CAS  Google Scholar 

  24. Lawford, H. G. and Rousseau, J. D. (1997), Appl. Biochem. Biotechnol. 63–65, 287–304.

    Google Scholar 

  25. Satyagal, V. N. and Agrawal, P. (1990), Biotechnol. Bioeng. 35, 23–30.

    Article  CAS  Google Scholar 

  26. Joachimsthal, E. L., Haggett, K. D., and Rogers, P. L. (1999), Appl. Biochem. Biotechnol. 77–79, 147–158.

    Article  Google Scholar 

  27. Rogers, P. L. and Lawford, H. G. (1999), 21st Symposium on Biotechnology for Fuels and Chemicals, Fort Collins, CO, May 2–6, Abstract 2–10.

  28. Horton, R. H., Moran, L. A., Ochs, R. S., Rawn, J. D., and Scrimgeour, K. G. (1996), in Principles of Biochemistry, 2nd ed., Prentice Hall, Upper Saddle River, NY, p. 428.

    Google Scholar 

  29. Lawford, H. G. and Rousseau, J. D. (1998) Appl. Biochem. Biotechnol. 70–72, 173–186.

    Google Scholar 

  30. Jöbses, I. M. L., Egberts, G. T. C., van Baalen, A., and Roels, J. A. (1985), Biotechnol. Bioeng. 27, 984–995.

    Article  Google Scholar 

  31. Jöbses, I. M. L. and Roels, J. A. (1985), Biotechnol. Bioeng. 28, 554–563.

    Article  Google Scholar 

  32. Feischko, J. and Humphrey, A. (1983), Biotechnol. Bioeng. 25, 1655–1660.

    Article  Google Scholar 

  33. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, 295–310.

    Article  Google Scholar 

  34. DiMarco, A. and Romano, A. H. (1985), Appl. Environ. Microbiol 49, 151–157.

    CAS  Google Scholar 

  35. Parker, C., Barnell, W. O., Snoep, J. L., Ingram, L. O., and Conway, T. (1995), Mol. Microbiol. 15, 795–802.

    Article  CAS  Google Scholar 

  36. Bauchop, T. and Elsden, S. R. (1960), J. Gen. Microbiol. 23, 457–469.

    CAS  Google Scholar 

  37. Beläich, J.-P., Beläich, A., and Simonpietri, P. (1972), J. Gen. Microbiol. 70, 179–185.

    Google Scholar 

  38. Lazdunski, A. and Beläich, J.-P. (1972), J. Gen. Microbiol. 70, 187–197.

    CAS  Google Scholar 

  39. Lavers, B. H., Pang, P., MacKenzie, C. R., Lawford, G. R., and Lawford, H. G. (1982), in Advances in Biotechnology, Proceedings of International Fermentation Symposium, London, Ontario, 1980, Moo-Young, M. and Robinson, W. C., eds. Pergamon, Toronto, Canada.

    Google Scholar 

  40. Lawford, H. G. and Stevnsborg, N. (1986), Biotechnot. Lett. 8, 345–350.

    Article  CAS  Google Scholar 

  41. Lawford, H. G., (1988), Appl. Biochem. Biotechnol. 17, 203–219.

    CAS  Google Scholar 

  42. Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982), Adv. Biochem. Eng. 23, 37–84.

    Google Scholar 

  43. Lee, K. J., Tribe, D. E., and Rogers, P. L. (1979), Biotechnol. Lett. 1, 421–426.

    Article  CAS  Google Scholar 

  44. Olivera, E. G., Morais, J. O., and Periera, N. (1992), Biotechnol. Lett. 14, 1081–1084.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh G. Lawford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawford, H.G., Rousseau, J.D. Comparative energetics of glucose and xylose metabolism in recombinant Zymomonas mobilis . Appl Biochem Biotechnol 84, 277–293 (2000). https://doi.org/10.1385/ABAB:84-86:1-9:277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:84-86:1-9:277

Index Entries

Navigation