Skip to main content
Log in

Modeling and optimization of biopolymer (Polyhydroxyalkanoates) production from ice cream residue by novel statistical experimental design

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHAs) are thermoplastic polyesters synthesized by Ralstonia eutropha and other bacteria as a form of intracellular carbon and energy storage and are accumulated as lipid inclusions in the cytoplasm of these bacteria. The modeling and optimization of PHA production by fermentation from industrial waste (ice cream residue) was studied by employing statistical experimental design methods. A series of iterative experimental designs was used to find optimal factor conditions (medium components and fermentation process time) in the order of fractional factorial design, path of steepest ascent, and full factorial augmented with axial design (rotational central composite design). An optimal range characterized by lipid (15 mg/mL) and % lipid (88%) values was found and further investigated to verify the optimal conditions for PHA production from ice cream (56.68 mL of ice cream or 56.68% ice cream in water [v/v], 5.03 mL of buffer, 1 mL of mineral salts solution, 100 μL of trace element solution, 100 mL of seed culture, and 213.76 h of fermentation time).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kessler, B. and Witholt, B. (1999), in Encyclopedia of Bioprocess Technology, volume 4, Flickinger, M. C. and Drew, S. W., eds., John Wiley & Sons, New York, pp. 2024–2040.

    Google Scholar 

  2. Kubasek, N. K. and Silverman, G. S. (1997), Environmental Law, Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  3. Swift, G. (1993), Acc. Chem. Res. 26, 105–110.

    Article  CAS  Google Scholar 

  4. Brandl, H., Bachofen, R., Mayer, J., and Wintermantel, E. (1995), Can. J. Microbiol. 41(Suppl. 1), 143–153.

    Article  CAS  Google Scholar 

  5. Kim, D. Y. and Rhee, Y. H. (2003), Appl. Microbiol. Biotechnol. 61, 300–308.

    CAS  Google Scholar 

  6. Kim, M.-N., Lee, A.-R., Yoon, J.-S., and Chin, I.-J. (2000), Eur. Polym. J. 36, 1677–1685.

    Article  CAS  Google Scholar 

  7. Sang, B.-I., Hori, K., Tanji, Y., and Unno, H. (2002), Appl. Microbiol. Biotechnol. 58, 241–247.

    Article  CAS  Google Scholar 

  8. Ayorinde, F. O., Saeed, K. A., Price, E., Murrow, A., Collins, W. E., McInnis, F., Pollack, S. K., et al. (1998), J. Ind. Microbiol. Biotechnol. 21, 46–50.

    Article  CAS  Google Scholar 

  9. Yu, P. H. F., Chura, H., Huang, A. L., Lo, W. H., and Ho, K. P. (1999), Water Sci. Technol. 40(1), 365–370.

    Article  CAS  Google Scholar 

  10. Ahn, W. S., Park, S. J., and Lee, S. Y. (2000), Appl. Environ. Microbiol. 66(8), 3624–3627.

    Article  CAS  Google Scholar 

  11. Fuchtenbusch, B., Wullbrandt, D., and Steinbuchel, A. (2000), Appl. Microbiol. Biotechnol. 53, 167–172.

    Article  CAS  Google Scholar 

  12. Hong, K., Leung, Y. C., Kwok, S. Y., Law, K. H., Lo, W. H., Chua, H., and Yu, P. H. (2000), Appl. Biochem. Biotechnol. 84–86, 381–390.

    Article  Google Scholar 

  13. Wong, A. L., Chua, H., and Yu, P. H. F. (2000), Appl. Biochem. Biotechnol. 84–86, 843–857.

    Article  Google Scholar 

  14. Yu, P. H., Chua, H., Huang, A. L., Lo, W., and Chen, G. Q. (1998), Appl. Biochem. Biotechnol. 70(72), 603–614.

    Article  Google Scholar 

  15. Lee, K.-M. and Gilmore, D. F. (2005), Process Biochem. 40, 226–249.

    Google Scholar 

  16. Park, S. J., Park, J. P., and Lee, S. Y. (2002), Biotechnol. Lett. 24, 185–189.

    Article  CAS  Google Scholar 

  17. Reddy, C. S. K., Ghai, R., and Kalia, V. C. (2003), Bioresour. Technol. 87, 137–146.

    Article  CAS  Google Scholar 

  18. Ashby, R. D. and Foglia, T. A. (1998), Appl. Microbiol. Biotechnol. 49, 431–437.

    Article  CAS  Google Scholar 

  19. Cromwick, A.-M., Foglia, T., and Lenz, R.W. (1996), Appl. Microbiol. Biotechnol. 46, 464–469.

    Article  CAS  Google Scholar 

  20. Haaland, P. D. (1989), Experimental Design in Biotechnology, Marcel Dekker, New York.

    Google Scholar 

  21. Montgomery, D. C. (2004), Design and Analysis of Experiments, 6th ed., John Wiley & Sons, New York.

    Google Scholar 

  22. Myers, R. H. and Montgomery, D. C. (2002), Response Surface Methodology: Process and Product Optimization, Using Designed Experiments, 2nd ed., John Wiley & Sons, New York.

    Google Scholar 

  23. Kuehl, R. O. (2000), Design of Experiments: Statistical Principle of Research Design and Analysis, 2nd ed., Brooks/Cole, Pacific Crove, CA.

    Google Scholar 

  24. Oehlert, G. W. (2000), A First Course in Design and Analysis of Experiments, W. H. Freeman and Company, New York.

    Google Scholar 

  25. Wu, C. F. J. and Hamada, M. (2000), Experiments: Planning, Analysis, and Parameter Design Optimization, John Wiley & Sons, New York.

    Google Scholar 

  26. Dean, A. and Voss, D. (1999), Design and Analysis of Experiments, Springer-Verlag, New York.

    Book  Google Scholar 

  27. Taylor, B. W. III (1999), Introduction to Management Science, 6th ed., Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  28. Mason, R. L., Gunst, R. F., and Hess, J. C. (1989), Statistical Design and Analysis of Experiments with Applications to Engineering and Science, John Wiley & Sons, New York.

    Google Scholar 

  29. Floros, J. D. and Chinan, M. S. (1988), Food Technol. 42(20), 72–78.

    Google Scholar 

  30. Bayne, C. and Rubin, I. B. (1986), Practical Experimental Designs and Optimization Methods for Chemists, VCH, Deerfield, FL.

    Google Scholar 

  31. Hendrix, C. D. (1980), Chemtech August: 488–497.

    Google Scholar 

  32. Matavulj, M. and Molitoris, H. P. (1992), FEMS Microbiol. Rev. 103, 323–331.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Min Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KM., Gilmore, D.F. Modeling and optimization of biopolymer (Polyhydroxyalkanoates) production from ice cream residue by novel statistical experimental design. Appl Biochem Biotechnol 133, 113–148 (2006). https://doi.org/10.1385/ABAB:133:2:113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:133:2:113

Index Entries

Navigation