Skip to main content
Log in

Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by metabolically engineered Escherichia coli strains

  • Session 2—Introduction to Microbial Catalysis and Engineering
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biosynthesis of polyhydroxyalkanoates (PHAs) consisting of 3-hydroxyalkanoates (3HAs) of 4 to 10 carbon atoms was examined in metabolically engineered Escherichia coli strains. When the fadA and/or fadB mutant E. coli strains harboring the plasmid containing the Pseudomonas sp. 61-3 phaC2 gene and the Ralstonia eutropha phaAB genes were cultured in Luria-Bertani (LB) medium supplemented with 2 g/L of sodium decanoate, all the recombinant E. coli strains synthesized PHAs consisting of C4, C6, C8, and C10 monomer units. The monomer composition of PHA was dependent on the E. coli strain used. When the fadA mutant E. coli was employed, PHA containing up to 63 mol% of 3-hydroyhexanoate was produced. In fadB and fadAB mutant E. coli strains, 3-hydroxybutyrate (3HB) was efficiently incorporated into PHA up to 86 mol%. Cultivation of recombinant fadA and/or fadB mutant E. coli strains in LB medium containing 10 g/L of sodium gluconate and 2 g/L of sodium decanoate resulted in the production of PHA copolymer containing a very high fraction of 3HB up to 95 mol%. Since the material properties of PHA copolymer consisting of a large fraction of 3HB and a small fraction of medium-chain-length 3HA are similar to those of low-density polyethylene, recombinant E. coli strains constructed in this study should be useful for the production of PHAs suitable for various commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, A. J. and Dawes, E. A. (1990), Microbiol. Rev. 54, 450–472.

    PubMed  CAS  Google Scholar 

  2. Doi, Y. (1990) Microbial Polyesters, VCH, New York, NY.

    Google Scholar 

  3. Lee, S. Y. (1996), Biotechnol. Bioeng. 49, 1–14

    Article  CAS  ADS  Google Scholar 

  4. Madison, L. L. and Huisman, G. W. (1999), Microbiol. Mol. Biol. Rev. 63, 21–53.

    PubMed  CAS  Google Scholar 

  5. Steinbüchel, A. and Füchtenbusch, B. (1998), Trends Biotechnol. 16, 419–427.

    Article  PubMed  Google Scholar 

  6. Lee, S. Y. (1996), Trends Biotechnol. 14, 431–438.

    Article  CAS  Google Scholar 

  7. Steinbüchel, A. and Valentin, H. E. (1995), FEMS Microbiol. Lett. 128, 219–228.

    Article  Google Scholar 

  8. Liebergesell, M., Mayer, F., and Steinbüchel, A. (1993), Appl. Microbiol. Biotechnol. 40, 292–300.

    Article  CAS  Google Scholar 

  9. Brandl, H., Knee, E. J., Fuller, R. C., Gross, R. A., and Renz, R. W. (1989), Int. J. Biol. Macromol. 11, 49–55.

    Article  PubMed  CAS  Google Scholar 

  10. Liebergesell, M., Hustede, E., Timm, A., Steinbüchel, A., Fuller, R. C., Lenz, R. W., and Schlegel, H. G. (1991), Arch. Microbiol. 155, 415–421.

    Article  CAS  Google Scholar 

  11. Haywood, G. W., Anderson, A. J., Williams, G. A., Dawes, E. A., and Ewing, D. F. (1991), Int. J. Biol. Macromol. 13, 83–87.

    Article  PubMed  CAS  Google Scholar 

  12. Kato, M., Bao, H. J., Kang, C. K., Fukui, T., and Doi, Y. (1996), Appl. Microbiol. Biotechnol. 45, 363–370.

    Article  CAS  Google Scholar 

  13. Kobayashi, G., Shiotani, T., Shima, Y., and Doi, Y. (1994), in Biodegradable Plastics and Polymers, Doi, Y. and Fukuda, K., eds. Elsevier Science, Amsterdam, The Netherlands, pp. 410–416.

    Google Scholar 

  14. Lee, S. H., Oh, D. H., Ahn, W. S., Lee, Y., Choi, J., and Lee, S. Y. (2000), Biotechnol. Bioeng. 67, 240–244.

    Article  PubMed  CAS  Google Scholar 

  15. Steinbüchel, A. and Wiese, S. (1992), Appl. Microbiol. Biotechnol. 37, 601–697.

    Google Scholar 

  16. Doi, Y., Kitamura, S., and Abe, H. (1995), Macromolecules 28, 4822–4828.

    Article  CAS  Google Scholar 

  17. Matsusaki, H., Abe, H., and Doi, Y. (2000), Biomacromoles 1, 17–22.

    Article  CAS  Google Scholar 

  18. Matsusaki, H., Manji, S., Taguchi, K., Kato, M., Fukui, T., Doi, Y. (1998), J. Bacteriol. 180, 6459–6467.

    PubMed  CAS  Google Scholar 

  19. Matsusaki, H., Abe, H., Taguchi, K., Fukui, T., and Doi, Y. (2000), Appl. Microbiol. Biotechnol. 53, 401–419.

    Article  PubMed  CAS  Google Scholar 

  20. Tsuge, T., Fukui, T., Matsusaki, H., Taguchi, S., Kobayashi, G., Ishizaki, A., and Doi, Y. (2000), FEMS Microbiol. Lett. 184, 193–198.

    Article  PubMed  CAS  Google Scholar 

  21. Park, S. J., Park, J. P., and Lee, S. Y. (2002), FEMS Microbiol. Lett. 214, 217–222.

    Article  PubMed  CAS  Google Scholar 

  22. Langenbach, S., Rehm, B. H. A., and Steinbüchel, A. (1997), FEMS Microbiol. Lett. 150, 303–309.

    Article  PubMed  CAS  Google Scholar 

  23. Qi, Q., Steinbüchel, A., and Rehm, B. H. A. (1998), FEMS Microbiol. Lett. 167, 89–94.

    PubMed  CAS  Google Scholar 

  24. Snell, K. D., Feng, F., Zhong, L., Martin, D., and Madison, L. L. (2002), J. Bacteriol. 184, 5696–5705.

    Article  PubMed  CAS  Google Scholar 

  25. Ren, Q., Sierro, N., Witholt, B., and Kessler, B. (2000), J. Bacteriol. 182, 2978–2981.

    Article  PubMed  CAS  Google Scholar 

  26. Park, S. J., Park, J. P., Lee, S. Y., and Doi, Y. (2003), Enzyme Microb. Technol. 33, 62–70.

    Article  CAS  Google Scholar 

  27. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989), Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  28. Lee, S. Y. (1994), Biotechnol. Lett. 16, 1247–1252.

    CAS  Google Scholar 

  29. Peekhaus, N. and Conway, T. (1998), J. Bacteriol. 180, 1777–1785.

    PubMed  CAS  Google Scholar 

  30. Choi, J., Lee, S. Y., and Han, K. (1998), Appl. Environ. Microbiol. 64, 4897–4903.

    PubMed  CAS  Google Scholar 

  31. Braunegg, G., Sonnleitner, B., and Lafferty, R. M. (1978), Eur. J. Appl. Microbiol. Biotechnol. 6, 29–37.

    Article  CAS  Google Scholar 

  32. Taguchi, K., Aoyagi, Y., Matsusaki, H., Fukui, T., and Doi, Y. (1999), FEMS Microbiol. Lett. 176, 183–190.

    Article  PubMed  CAS  Google Scholar 

  33. Campbell, J. W., Morgan-Kiss, R. M., and Cronan, J. E. Jr. (2003), Mol. Microbiol. 47, 793–805.

    Article  PubMed  CAS  Google Scholar 

  34. Park, S. J. and Lee, S. Y. (2003), J. Bacteriol. 185, 5391–5397.

    Article  PubMed  CAS  Google Scholar 

  35. Ren, Q., Sierro, N., Kellerhals, M., Kessler, B., and Witholt, B. (2000), Appl. Environ. Microbiol. 66, 1311–1320.

    Article  PubMed  CAS  Google Scholar 

  36. Schubert, P., Steinbüchel, A., and Schlegel, H. G. (1988), J. Bacteriol. 170, 5837–5847.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Yup Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.J., Lee, S.Y. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by metabolically engineered Escherichia coli strains. Appl Biochem Biotechnol 114, 335–346 (2004). https://doi.org/10.1385/ABAB:114:1-3:335

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:114:1-3:335

Index Entries

Navigation