Skip to main content
Log in

Functional sulfur amino acid production and seawater remediation system by sterile Ulva sp. (chlorophyta)

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sterile Ulva, which is a macroalga, has the potential to grow stably; therefore, this seaweed is expected to be an efficient resource of functional food containing various nutrients such as sulfur amino acids, proteins, carbohydrates, and minerals. Ulva lactuca was selected from the “Marine Park” in Tokyo Bay, and its growth rate (g-dry/[m2·d]) was measured using model reactors located on the land or on the surface of the sea at Yokohama. The growth rate of U. lactuca was recorded to be approx 20 g-dry/(m2·d), which is estimated to be 10 times greater than that in a natural field in the Marine Park. In addition, this growth rate was higher than that of conventional crops such as corn and rice on a farm or paddy. These data led us to newly design and propose a floating type of labor-efficient U. lactuca production system. d-Cysteinolic acid, which is included in U. lactuca as a major sulfur amino acid, inhibited the Fenton reaction, resulting in suppression of hydroxyl radical production and singlet oxygen. Addition of the sulfur amino acid (1µM) to HepG2 cells markedly decreased the intracellular triglyceride level. Hence, this proposed facility also has the potential for industrial production of a valuable resource for the primary prevention of lifestyle-related diseases using enriched or eutrophied seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Satake, M., Chiba, Y., Makuta, M., Fujita, T., Kohama, Y., and Mimura, T. (1987), Yakugaku Zasshi 107, 917–919 (in Japanese).

    PubMed  CAS  Google Scholar 

  2. Satake, M., Mikajiri, A., Makuta, M., Fujita, T., Murakami, M., Yamaguchi, K., and Konosu, S. (1988), Comp. Biochem. Physiol. 90B, 151–153.

    CAS  Google Scholar 

  3. Ito, K. (1963), Bull. Jap. Soc. Sci. Fish. 29, 771–775.

    CAS  Google Scholar 

  4. Migita, S. (1985), Bull. Fac. Fish. Nagasaki Univ. 57, 33–37 (in Japanese).

    Google Scholar 

  5. Ohno, M. (1988), Marine Foul. 7, 13–17.

    Google Scholar 

  6. Hirata, H. and Kohirata, E. (1993), Isra. J. Aquacul Bamidgeh 45, 164–168.

    Google Scholar 

  7. Hirata, H., Yamasaki, S., Maenosono, H., Nakazono, T., Yamauchi, T., and Matsuda, M. (1994), Suisanzoshoku 42, 377–381.

    Google Scholar 

  8. Brind, X. and Morand, P. (1997), J. Appl. Phycol. 9, 511–524.

    Google Scholar 

  9. Goto, T., Une, M., Kihira, K., Kuramoto, T., and Hoshita, T. (1993), Biol. Pharm. Bull. 16, 1216–1219.

    PubMed  CAS  Google Scholar 

  10. Une, M., Goto, T., Kihira, K., Kuramoto, T., Hagiwara, K., Nakajima, T., and Hoshita, T. (1991), J. Lipid Res. 32, 1619–1623.

    PubMed  CAS  Google Scholar 

  11. Yanagita, T., Hara, E., Yotsumoto, H., Rahaman, S. H., Han, S. Y., Cha, J. Y., and Yamamoto, K. (1999), Curr. Ther. Res. 60, 423–434.

    Article  CAS  Google Scholar 

  12. Hirayama, S., Ueda, R., and Sugata, K. (1994), in Magnetic Resonance in Medicine, Ohya, H. N., ed., Nihon-Igakukan, Tokyo, pp. 117–119.

    Google Scholar 

  13. Fujitani, Y., Kasai, K., Ohtani, S., Nishimura, K., Yamada, M., and Utsumi, K. (1997), J. Anim. Sci. 75, 483–489.

    PubMed  CAS  Google Scholar 

  14. Devamanoharan, P. S., Ali, A. H., and Varma, S. D. (1997), Mol. Cell. Biochem. 177, 245–250.

    Article  PubMed  CAS  Google Scholar 

  15. Pokhrel, P. K. and Lau-Cam, C. A. (2000), Adv. Exp. Med. Biol. 483, 411–429.

    PubMed  CAS  Google Scholar 

  16. Pokhrel, P. K. and Lau-Cam, C. A. (2000), Adv. Exp. Med. Biol. 483, 503–522.

    Article  PubMed  CAS  Google Scholar 

  17. Messina, S. A. and Dawson, R. Jr. (2000), Adv. Exp. Med. Biol. 483, 355–367.

    PubMed  CAS  Google Scholar 

  18. Tanaka, K. and Sugano, M. (1989), J. Nutrit. Sci. Vitam. 35, 323–332.

    CAS  Google Scholar 

  19. Liu, L. and Yeh, Y. Y. (2001), Lipids 36, 395–400.

    Article  PubMed  CAS  Google Scholar 

  20. Hirayama, S., Ookubo, S., and Miyasaka, M. (1999), in Proceedings of the International OTEC/DOWA Association ’99, Uehara, H., Wang, J. H., and Ikegami, Y., eds., International Otec/Dowa Association and Saga University, Saga, pp. 273–279.

    Google Scholar 

  21. Murata, Y. (1975), Crop Productivity and Solar Energy Utilization in Various Climates in Japan, University of Tokyo Press, Tokyo.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Hirayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirayama, S., Miyasaka, M., Amano, H. et al. Functional sulfur amino acid production and seawater remediation system by sterile Ulva sp. (chlorophyta). Appl Biochem Biotechnol 112, 101–110 (2004). https://doi.org/10.1385/ABAB:112:2:101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:112:2:101

Index Entries

Navigation