Skip to main content
Log in

Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60g/L of corn stover, 195°C, 15 min, 12 bar O2, 2 g/L of Na2CO3) increased the enzymatic conversion of corn stover four times, compared to untreated material. Under these conditions 60% of hemicellulose and 30% of lignin were solubilized, whereas 90% of cellulose remained in the solid fraction. After 24-h hydrolysis at 50°C using 25 filter paper units (FPU)/g of dry matter (DM) biomass, the achieved conversion of cellulose to glucose was about 85%. Decreasing the hydrolysis temperature to 40°C increased hydrolysis time from 24 to 72 h. Decreasing the enzyme loading to 5 FPU/g of DM biomass slightly decreased the enzymatic conversion from 83.4 to 71%. Thus, enzyme loading can be reduced without significantly affecting the efficiency of hydrolysis, an important economical aspect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stryer, L. (1988), Biochemistry, 3rd ed., W. H. Freeman, New York.

    Google Scholar 

  2. von Sivers, M. and Zacchi, G. (1996), Biores. Technol. 56, 131–140.

    Article  Google Scholar 

  3. Wyman, C. E. (1994), Biores. Technol. 50, 3–16.

    Article  CAS  Google Scholar 

  4. Statistical Annual Reviews of the Hungarian Agriculture (1996–1999), Hungarian Central Statistical Office, Budapest.

  5. Fan, L. T., Lee, Y., and Gharpuray, M. M. (1982), Biochem. Eng. 23 157–187.

    CAS  Google Scholar 

  6. Coughlan, M. P. (1992), Biores. Technol. 39, 107–115.

    Article  CAS  Google Scholar 

  7. Chang, M. M., Chou, T. Y. C., and Tsao, G. T. (1981), Biochem. Eng. 20, 15–42.

    Article  CAS  Google Scholar 

  8. Lin, K. W., Ladish, M. R., Schaefer, D. M., Noller, C. H., Lechtenberg, V., and Tsao, G. T. (1981), AIChE Symp. 207, 102–106.

    Google Scholar 

  9. Stenberg, K., Tengborg, C., Galbe, M., and Zacchi, G. (1998), J. Chem. Technol. Biotechnol. 71, 299–308.

    Article  CAS  Google Scholar 

  10. Kaar, W. E., Gutierrez, C. V., and Kinoshita, C. M. (1998), Biomass Bioenergy 14, 277–287.

    Article  CAS  Google Scholar 

  11. Holtzapple, M. T., Jun, J., Ashok, G., Patibandala, S. L., and Dale, B. E. (1991), Appl. Biochem. Biotechnol. 28/29, 59–74.

    Google Scholar 

  12. Ghosh, P. and Singh, A. (1993), Appl. Microbiol. 39, 295–333.

    Article  CAS  Google Scholar 

  13. Moyson, E., de Smet, K., and Verachtert, H. (1991), Int. Symp. Environ. Biotechnol. Apr. Ref. No. 000147.

  14. Han, Y. W. (1978), Appl. Microbiol. 23, 119–153.

    CAS  Google Scholar 

  15. McGinnis, G. D., Wilson, W. W., and Mullen, C. E. (1983), Ind. Eng. Chem. Prod. Res. Dev. 22, 352–357.

    Article  CAS  Google Scholar 

  16. McGinnis, G. D., Wilson, W. W., Prince, S. E., and Chen, C. C. (1983), Ind. Eng. Chem. Prod. Res. Dev. 22, 633–636.

    Article  CAS  Google Scholar 

  17. Bjerre, A. B., Olesen, A. B., Fernqvist, T., Plöger, A., and Schmidt, A. S. (1996), Biotechnol. Bioeng. 49, 568–577.

    Article  CAS  Google Scholar 

  18. Ahring, B. K., Licht, D., Schmidt, A. S., Sommer, P., and Thomsen, A. B. (1999), Biores. Technol. 68, 3–9.

    Article  CAS  Google Scholar 

  19. Palmqvist, E., Hahn-Hägerdal, B., Szengyel, Z., Zacchi, G., and Reczey, K. (1997), Enzyme Microb. Technol. 20, 286–293.

    Article  CAS  Google Scholar 

  20. Goering, H. K. and van Soest, P. J. (1970), in Agricultural Handbook no. 379, Agricultural Research Service, United States Department of Agriculture, Washington, DC, pp. 1–20.

    Google Scholar 

  21. Schmidt, A. S. and Thomsen, A. B. (1998), Biores. Technol. 64, 139–151.

    Article  CAS  Google Scholar 

  22. Klinke, H. B., Olsson, L., Thomsen, A. B., and Ahring, B. K. (2002). Biotech. Bioeng., in press.

  23. Miller, G. L. (1959), Anal. Chem. 31, 420–428.

    Google Scholar 

  24. Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–33.

    CAS  Google Scholar 

  25. Berghem, L. E. R. and Petterson, L. G. (1974), Eur. J. Biochem. 46, 295–305.

    Article  CAS  Google Scholar 

  26. Olsson, L. and Hahn-Hägerdal, B. (1993), Proc. Biochem. 28, 249–257.

    Article  CAS  Google Scholar 

  27. Kaar, W. E. and Holtzapple, M. T. (2000), Biomass Bioenergy 18, 189–199.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Belinda Thomsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, E., Schmidt, A.S., Réczey, K. et al. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility. Appl Biochem Biotechnol 104, 37–50 (2003). https://doi.org/10.1385/ABAB:104:1:37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:104:1:37

Index Entries

Navigation