Skip to main content
Log in

Pretreatment of Corn Stover by Low Moisture Anhydrous Ammonia (LMAA) in a Pilot-Scale Reactor and Bioconversion to Fuel Ethanol and Industrial Chemicals

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Corn stover (CS) adjusted to 50, 66, and 70 % moisture was pretreated by the low moisture anhydrous ammonia (LMAA) process in a pilot-scale ammoniation reactor. After ammoniation, the 70 % moisture CS was treated at 90 and 100 °C whereas the others were treated at 90 °C only. The 70 % moisture pretreated CS then was subjected to a storage study under non-sterile conditions for 3 months. It was found that storage time did not have significant effects on the compositions of the pretreated materials and their hydrolysis by commercial enzymes. The 70 % moisture CS treated at 90 °C was used for preparation of a mix sugar hydrolysate (MSH) using combination of cellulase and xylanase. The MSH was used to prepare a corn mash at 9.5 wt% solid then subjected to ethanol fermentation by Escherichia coli KO11. The 66 % moisture CS treated at 90 °C was hydrolyzed with xylanase to make a xylose-rich hydrolysate (XRH), which was subsequently used for butyric acid fermentation by Clostridium tyrobutyricum. The resultant cellulose-enriched residue was hydrolyzed with cellulase to make a glucose-rich hydrolysate (GRH), which was subsequently used for succinic acid fermentation by E. coli AFP184.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dale, B. E., & Holtzapple, M. (2015). The need for biofuels. Chemical Engineering Progress, 111, 36–44.

    Google Scholar 

  2. Anonymous (2014). World fuel ethanol production. Renewable Fuels Association (RFA). http://ethanolrfa.org/pages/World-Fuel-Ethanol-Production.

  3. Drapcho, C. M., Nghiem, N. P., & Walker, T. H. (2008). Biofuels engineering process technology. New York: Mc-Graw-Hill.

    Google Scholar 

  4. Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J. and Erbach, D. C. (2005). Biomass as feedstock for bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. U. S. Department of Energy.

  5. Werpy, T. and G. Petersen, G. (2004). Top value added chemicals from biomass, volume 1—results of screening for potential candidates from sugars and synthesis gas. U. S. Department of Energy.

  6. Kim, T. H., Nghiem, N. P., & Hicks, K. B. (2009). Pretreatment and fractionation of corn stover by soaking in ethanol and aqueous ammonia. Applied Biochemistry and Biotechnology, 153, 171–179.

    Article  CAS  Google Scholar 

  7. Nghiem, N. P., Kim, T. H., Yoo, C. G., & Hicks, K. B. (2013). Enzymatic fractionation of SAA-pretreated barley straw for production of ethanol and astaxanthin as a value-added co-product. Applied Biochemistry and Biotechnology, 171, 341–351.

    Article  CAS  Google Scholar 

  8. Zhang, X., & Nghiem, N. P. (2014). Pretreatment and fractionation of wheat straw for production of fuel ethanol and value-added co-products in a biorefinery. AIMS Bioengineering, 1, 40–52.

    Article  Google Scholar 

  9. Nghiem, N. P., Chon, N. M., Drapcho, C. M., & Walker, T. H. (2013). Sweet sorghum biorefinery for production of fuel ethanol and value-added co-products. Biological Engineering Transactions, 6, 143–155.

    Google Scholar 

  10. Yoo, C. G., Nghiem, N. P., Hicks, K. B., & Kim, T. H. (2011). Pretreatment of corn stover using low moisture anhydrous ammonia (LMAA) process. Bioresource Technology, 102, 10028–10034.

    Article  CAS  Google Scholar 

  11. Bals, B. D., Jin, M., & Dale, B. E. (2012). Low temperature and long residence time AFEX pretreatment of corn stover. Bioenergy Research, 5, 372–379.

    Article  CAS  Google Scholar 

  12. Gottschalk, G. (1986). Bacterial metabolism. New York: Springer.

    Book  Google Scholar 

  13. Mayerhoff, Z. D. V. L., Roberto, I. C., & Silva, S. S. (1998). Production of xylitol by Candida mogii from rice straw hydrolysate. Applied Biochemistry and Biotechnology, 70–72, 149–159.

    Article  Google Scholar 

  14. Patel, M. A., Ou, M. S., Ingram, L. O., & Shanmugam, K. T. (2005). Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Biotechnology Progress, 21, 1453–1460.

    Article  CAS  Google Scholar 

  15. Liu, S., & Yang, S. T. (2006). Butyric acid production from acid hydrolysate of corn fibre by Clostridium tyrobutyricum in a fibrous-bed bioreactor. Process Biochemistry, 41, 801–808.

    Article  CAS  Google Scholar 

  16. Taylor, F., Kim, T. H., Goldberg, N. M., & Flores, R. A. (2006). Uniformity of distribution of anhydrous ammonia into shelled corn in a continuous ammoniator. Transactions ASABE, 50, 147–152.

    Article  Google Scholar 

  17. Nghiem, N. P., & Senske, G. E. (2015). Capture of carbon dioxide from ethanol fermentation by liquid absorption for use in biological production of succinic acid. Applied Biochemistry and Biotechnology, 175, 2104–2113.

    Article  CAS  Google Scholar 

  18. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, C., & Templeton, D. (2005). Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, Golden, CO.

  19. Yoo, C. G., Lee, C. W., & Kim, T. H. (2014). Effect of low moisture anhydrous ammonia (LMAA) pretreatment on biomass quality and enzymatic hydrolysis for long-term storage. Applied Biochemistry and Biotechnology, 174, 2639–2651.

    Article  CAS  Google Scholar 

  20. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., & Saddler, J. (2006). Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. Journal of Biotechnology, 125, 198–209.

    Article  CAS  Google Scholar 

  21. Palonen, H., Tjerneld, F., Zacchi, G., & Tenkanen, M. (2004). Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. Journal of Biotechnology, 107, 65–72.

    Article  CAS  Google Scholar 

  22. Jin, M., Balan, V., Gunawan, C., & Dale, B. E. (2012). Quantitatively understanding reduced xylose fermentation performance in AFEX™ treated corn stover hydrolysate using Saccharomyces cerevisiae 424A (LNH-ST) and Escherichia coli KO11. Bioresource Technology, 111, 294–300.

    Article  CAS  Google Scholar 

  23. Nghiem, N. P., Hicks, K. B., & Johnston, D. B. (2010). Integration of succinic acid and ethanol production with potential application in a corn or barley biorefinery. Applied Biochemistry and Biotechnology, 162, 1915–1928.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks the North Central Sun Grant Office for the financial support, DuPont Industrial Biosciences and Novozymes for providing the enzyme products, and Dr. Kurt Rosentrater of Iowa State University for obtaining the corn stover. The valuable assistance of Mr. Jacob Armiger and Mr. Paul Giardina on the experimental effort and sample analysis are also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhuan P. Nghiem.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture (USDA). USDA is an equal employment provider and employer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nghiem, N.P., Senske, G.E. & Kim, T.H. Pretreatment of Corn Stover by Low Moisture Anhydrous Ammonia (LMAA) in a Pilot-Scale Reactor and Bioconversion to Fuel Ethanol and Industrial Chemicals. Appl Biochem Biotechnol 179, 111–125 (2016). https://doi.org/10.1007/s12010-016-1982-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-1982-2

Keywords

Navigation