Skip to main content
Log in

Stochastic PDEs and Lack of Regularity

A Surface Growth Equation with Noise: Existence, Uniqueness, and Blow-up

  • Survey Article
  • Published:
Jahresbericht der Deutschen Mathematiker-Vereinigung Aims and scope Submit manuscript

Abstract

We review results on the existence and uniqueness for a surface growth model with or without space–time white noise. If the surface is a graph, then this model has striking similarities to the three dimensional Navier-Stokes equations in terms of energy estimates and scaling properties, and in both models the question of uniqueness of global weak solutions remains open.

In the physically relevant dimension \(d=2\) and with the physically relevant space–time white noise driving the equation, the direct fixed-point argument for mild solutions fails, as there is not sufficient regularity for the stochastic forcing. The situation is the simplest case where the method of regularity structures introduced by Martin Hairer can be applied, although we follow here a significantly simpler approach to highlight the key problems. Using spectral Galerkin method or any other type of regularization of the noise, one can give a rigorous meaning to the stochastic PDE and show existence and uniqueness of local solutions in that setting. Moreover, several types of regularization seem to yield all the same solution.

We finally comment briefly on possible blow up phenomena and show with a simple argument that many complex-valued solutions actually do blow up in finite time. This shows that energy estimates alone are not enough to verify global uniqueness of solutions. Results in this direction are known already for the 3D-Navier Stokes by Li and Sinai, treating complex valued solutions, and more recently by Tao by constructing an equation of Navier-Stokes type with blow up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic Press, San Diego (2003)

    MATH  Google Scholar 

  2. Agélas, L.: Global regularity of solutions of equation modeling epitaxy thin film growth in \(\mathbb{R}^{d}\), \(d=1,2\). J. Evol. Equ. 15(1), 89–106 (2015). doi:10.1007/s00028-014-0250-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Barabasi, A.L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  4. Barbato, D., Morandin, F., Romito, M.: Smooth solutions for the dyadic model. Nonlinearity 24(11), 3083–3097 (2011) (featured article)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barbato, D., Morandin, F., Romito, M.: Global regularity for a logarithmically supercritical hyperdissipative dyadic equation. Dyn. Partial Differ. Equ. 11(1), 39–52 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barbato, D., Morandin, F., Romito, M.: Global regularity for a slightly supercritical hyperdissipative Navier-Stokes system. Anal. PDE 7(8), 2009–2027 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94(1), 61–66 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Blömker, D.: Nonhomogeneous noise and \(Q\)-Wiener processes on bounded domains. Stoch. Anal. Appl. 23(2), 255–273 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Blömker, D., Flandoli, F., Romito, M.: Markovianity and ergodicity for a surface growth PDE. Ann. Probab. 37(1), 275–313 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Blömker, D., Gugg, C.: Thin-film-growth-models: on local solutions. In: Albeverio, S., et al. (eds.) Recent Developments in Stochastic Analysis and Related Topics. Proceedings of the First Sino-German Conference on Stochastic Analysis (A Satellite Conference of ICM 2002), Beijing, China, August 29–September 3, 2002, pp. 66–77. World Scientific, River Edge (2004)

    Chapter  Google Scholar 

  11. Blömker, D., Gugg, C.: On the existence of solutions for amorphous molecular beam epitaxy. Nonlinear Anal., Real World Appl. 3(1), 61–73 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Blömker, D., Gugg, C., Raible, M.: Thin-film-growth models: roughness and correlation functions. Eur. J. Appl. Math. 13(4), 385–402 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Blömker, D., Hairer, M.: Stationary solutions for a model of amorphous thin-film growth. Stoch. Anal. Appl. 22(4), 903–922 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Blömker, D., Maier-Paape, S., Wanner, T.: Roughness in surface growth equations. Interfaces Free Bound. 3(4), 465–484 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Blömker, D., Nolde, C., Robinson, J.C.: Rigorous numerical verification of uniqueness and smoothness in a surface growth model. J. Math. Anal. Appl. 429(1), 311–325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Blömker, D., Romito, M.: Regularity and blow up in a surface growth model. Dyn. Partial Differ. Equ. 6(3), 227–252 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Blömker, D., Romito, M.: Local existence and uniqueness in the largest critical space for a surface growth model. Nonlinear Differ. Equ. Appl. 19(3), 365–381 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Blömker, D., Romito, M.: Local existence and uniqueness for a two-dimensional surface growth equation with space-time white noise. Stoch. Anal. Appl. 31(6), 1049–1076 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Blömker, D., Romito, M., Tribe, R.: A probabilistic representation for the solutions to some non-linear PDEs using pruned branching trees. Ann. Inst. Henri Poincaré Probab. Stat. 43(2), 175–192 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bogachev, V.I.: Gaussian Measures. Mathematical Surveys and Monographs, vol. 62. Am. Math. Soc., Providence (1998)

    MATH  Google Scholar 

  21. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. Cannone, M.: Harmonic analysis tools for solving the incompressible Navier-Stokes equations. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 3, pp. 161–244. North-Holland, Amsterdam (2004)

    Chapter  Google Scholar 

  23. Castro, M., Cuerno, R., Vázquez, L., Gago, R.: Self-organized ordering of nanostructures produced by ion-beam sputtering. Phys. Rev. Lett. 94, 016102 (2005)

    Article  Google Scholar 

  24. Chernyshenko, S.I., Constantin, P., Robinson, J.C., Titi, E.S.: A posteriori regularity of the three-dimensional Navier-Stokes equations from numerical computations. J. Math. Phys. 48(6), 065204 (2007), 15 pp.

    Article  MathSciNet  MATH  Google Scholar 

  25. Chow, P.-L.: Stochastic Partial Differential Equations. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton (2007)

    MATH  Google Scholar 

  26. Collet, P., Eckmann, J.-P., Epstein, H., Stubbe, J.: A global attracting set for the Kuramoto-Sivashinsky equation. Commun. Math. Phys. 152(1), 203–214 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Cuerno, R., Barabási, A.-L.: Dynamic scaling of ion-sputtered surfaces. Phys. Rev. Lett. 74, 4746–4749 (1995)

    Article  Google Scholar 

  28. Da Prato, G., Debussche, A.: Stochastic Cahn-Hilliard equation. Nonlinear Anal., Theory Methods Appl. 26(2), 1–263 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Da Prato, G., Debussche, A.: Two-dimensional Navier-Stokes equations driven by a space-time white noise. J. Funct. Anal. 196(1), 180–210 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Da Prato, G., Debussche, A.: Ergodicity for the 3D stochastic Navier-Stokes equations. J. Math. Pures Appl. (9) 82(8), 877–947 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  32. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 152. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  33. Dashti, M., Robinson, J.C.: An a posteriori condition on the numerical approximations of the Navier-Stokes equations for the existence of a strong solution. SIAM J. Numer. Anal. 46(6), 3136–3150 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Debussche, A., Odasso, C.: Markov solutions for the 3D stochastic Navier-Stokes equations with state dependent noise. J. Evol. Equ. 6(2), 305–324 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Escudero, C., Gazzola, F., Peral, I.: Global existence versus blow-up results for a fourth order parabolic PDE involving the Hessian. J. Math. Pures Appl. 103(4), 924–957 (2015). doi:10.1016/j.matpur.2014.09.007

    Article  MathSciNet  Google Scholar 

  36. Escudero, C., Hakl, R., Peral, I., Torres, P.J.: On radial stationary solutions to a model of non-equilibrium growth. Eur. J. Appl. Math. 24(3), 437–453 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  37. Es-Sarhir, A., Stannat, W.: Improved moment estimates for invariant measures of semilinear diffusions in Hilbert spaces and applications. J. Funct. Anal. 259(5), 1248–1272 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Flandoli, F.: An introduction to 3D stochastic fluid dynamics. In: Proceedings of the CIME Course on SPDE in Hydrodynamics: Recent Progress and Prospects. Lecture Notes in Math., vol. 1942, pp. 51–150. Springer, Berlin (2008)

    Chapter  Google Scholar 

  39. Flandoli, F., Romito, M.: Statistically stationary solutions to the 3-D Navier-Stokes equations do not show singularities. Electron. J. Probab. 6(5) (2001), 15 pp. (electronic)

  40. Flandoli, F., Romito, M.: Markov selections and their regularity for the three-dimensional stochastic Navier-Stokes equations. C. R. Math. Acad. Sci. Paris, Ser. I 343, 47–50 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. Flandoli, F., Romito, M.: Regularity of transition semigroups associated to a 3D stochastic Navier-Stokes equation. In: Baxendale, P.H., Lototski, S.V. (eds.) Stochastic Differential Equations: Theory and Applications. Interdiscip. Math. Sci., vol. 2, pp. 263–280. World Scientific, Singapore (2007)

    Chapter  Google Scholar 

  42. Flandoli, F., Romito, M.: Markov selections for the three-dimensional stochastic Navier-Stokes equations. Probab. Theory Relat. Fields 140(3–4), 407–458 (2008)

    MATH  MathSciNet  Google Scholar 

  43. Fujita, H., Kato, T.: On the Navier-Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  44. Frisch, T., Verga, A.: Effect of step stiffness and diffusion anisotropy on the meandering of a growing vicinal surface. Phys. Rev. Lett. 96, 166104 (2006)

    Article  Google Scholar 

  45. Friz, P., Hairer, M.: A Course on Rough Paths: With an Introduction to Regularity Structures. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  46. Germain, P., Pavlović, N., Staffilani, G.: Regularity of solutions to the Navier-Stokes equations evolving from small data in \(\mbox{BMO}^{-1}\). Int. Math. Res. Not. 21 (2007), Art. ID rnm087, 35 pp.

  47. Goldys, B., Röckner, M., Zhang, X.: Martingale solutions and Markov selections for stochastic partial differential equations. Stoch. Process. Appl. 119(5), 1725–1764 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  48. Gubinelli, M., Imkeller, P., Perkowski, N.: Paraproducts, rough paths and controlled distributions (2014). arXiv:1210.2684v3 [math.PR]

  49. Hairer, M.: An Introduction to Stochastic PDEs. Lecture Notes (2009). arXiv:0907.4178 [math.PR]

    Google Scholar 

  50. Hairer, M.: Solving the KPZ equation. Ann. Math. 178(2), 559–664 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  51. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  52. Hairer, M., Weber, H.: Rough Burgers-like equations with multiplicative noise. Probab. Theory Relat. Fields 155(1–2), 71–126 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  53. Hairer, M., Weber, H.: Large deviations for white-noise driven, nonlinear stochastic PDEs in two and three dimensions. Ann. Fac. Sci. Toulouse 24(1), 55–92 (2015). doi:10.5802/afst.1442

    Article  MATH  MathSciNet  Google Scholar 

  54. Halpin-Healy, T., Zhang, Y.C.: Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Phys. Rep. 254, 215–414 (1995)

    Article  Google Scholar 

  55. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    MATH  Google Scholar 

  56. Hoppe, R., Linz, S., Litvinov, W.: On solutions of certain classes of evolution equations for surface morphologies. Nonlinear Phenom. Complex Syst. 6, 582–591 (2003)

    MathSciNet  Google Scholar 

  57. Hoppe, R., Nash, E.: A combined spectral element/finite element approach to the numerical solution of a nonlinear evolution equation describing amorphous surface growth of thin films. J. Numer. Math. 100(2), 127–136 (2002)

    MathSciNet  MATH  Google Scholar 

  58. Hoppe, R.H., Nash, E.: Numerical solution of a nonlinear evolution equation describing amorphous surface growth of thin films. In: Feistauer, M., et al. (eds.) Numerical Mathematics and Advanced Applications. Proceedings of ENUMATH 2003, the 5th European Conference on Numerical Mathematics and Advanced Applications, Prague, Czech Republic, August 18–22, 2003, pp. 440–448. Springer, Berlin (2004)

    Google Scholar 

  59. Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56(9), 889–892 (1986)

    Article  MATH  Google Scholar 

  60. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Graduate Texts in Mathematics, vol. 113. Springer, Berlin (1991)

    MATH  Google Scholar 

  61. Kato, T.: Nonstationary flows of viscous and ideal fluids in \(\mathbf{R}^{3}\). J. Funct. Anal. 9, 296–305 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  62. Koch, H., Tataru, D.: Well-posedness for the Navier-Stokes equations. Adv. Math. 157(1), 22–35 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  63. Koch, H., Lamm, T.: Geometric flows with rough initial data. Asian J. Math. 16(2), 209–235 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  64. Krylov, N.V.: The selection of a Markov process from a Markov system of processes, and the construction of quasi-diffusion processes. Izv. Akad. Nauk SSSR, Ser. Mat. 37, 691–708 (1973) (Russian)

    MathSciNet  MATH  Google Scholar 

  65. Lai, Z.-W., Das Sarma, S.: Kinetic growth with surface relaxation: continuum versus atomistic models. Phys. Rev. Lett. 66, 2348–2351 (1991)

    Article  Google Scholar 

  66. Lemarié-Rieusset, P.G.: Recent Developments in the Navier-Stokes Problem. Chapman & Hall/CRC Research Notes in Mathematics Series, vol. 431. CRC Press, Boca Raton (2002)

    MATH  Google Scholar 

  67. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  68. Li, D., Sinai, Ya.G.: Blow ups of complex solutions of the 3D Navier-Stokes system and renormalization group method. J. Eur. Math. Soc. 10(2), 267–313 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  69. Li, D., Sinai, Ya.G.: Complex singularities of solutions of some 1D hydrodynamic models. Physica D 237, 1945–1950 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  70. Liu, K.: Stability of Infinite Dimensional Stochastic Differential Equations with Applications. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Math., vol. 135. CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  71. Liu, W., Röckner, M.: Local and global well-posedness of SPDE with generalized coercivity conditions. J. Differ. Equ. 254(2), 725–755 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  72. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser Verlag, Basel (1995)

    Book  MATH  Google Scholar 

  73. Morosi, C., Pizzocchero, L.: On approximate solutions of semilinear evolution equations. II: Generalizations, and applications to Navier-Stokes equations. Rev. Math. Phys. 20(6), 625–706 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  74. Morosi, C., Pizzocchero, L.: An \(H^{1}\) setting for the Navier-Stokes equations: quantitative estimates. Nonlinear Anal. 74(6), 2398–2414 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  75. Morosi, C., Pizzocchero, L.: On approximate solutions of the incompressible Euler and Navier-Stokes equations. Nonlinear Anal. 75(4), 2209–2235 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  76. Mörters, P., Peres, Y.: Brownian Motion. With an Appendix by Oded Schramm and Wendelin Werner. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 30. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  77. Muñoz-García, J., Cuerno, R., Castro, M.: Coupling of morphology to surface transport in ion-beam-irradiated surfaces: normal incidence and rotating targets. J. Phys. Condens. Matter 21(22), 224020 (2009)

    Article  Google Scholar 

  78. Muñoz-García, J., Gago, R., Vázquez, L., Sánchez-García, J.A., Cuerno, R.: Observation and modeling of interrupted pattern coarsening: Surface nanostructuring by ion erosion. Phys. Rev. Lett. 104, 026101 (2010)

    Article  Google Scholar 

  79. Nelson, E.: The free Markoff field. J. Funct. Anal. 12, 211–227 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  80. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  81. Politi, P., ben-Avraham, D.: From the conserved Kuramoto-Sivashinsky equation to a coalescing particles model. Physica D 238, 156–161 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  82. Prévot, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  83. Prodi, G.: Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. 48(4), 173–182 (1959) (Italian)

    Article  MATH  MathSciNet  Google Scholar 

  84. Raible, M., Linz, S.J., Hänggi, P.: Amorphous thin film growth: minimal deposition equation. Phys. Rev. E 62, 1691–1705 (2000)

    Article  Google Scholar 

  85. Raible, M., Linz, S., Hänggi, P.: Amorphous thin film growth: modeling and pattern formation. Adv. Solid State Phys. 41, 391–403 (2001)

    Article  Google Scholar 

  86. Raible, M., Mayr, S.G., Linz, S.J., Moske, M., Hänggi, P., Samwer, K.: Amorphous thin film growth: theory compared with experiment. Europhys. Lett. 50, 61–67 (2000)

    Article  Google Scholar 

  87. Robinson, J.C., Sadowski, W.: Decay of weak solutions and the singular set of the three-dimensional Navier-Stokes equations. Nonlinearity 20(5), 1185–1191 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  88. Röckner, M., Zhu, R., Zhu, X.: Local existence and non-explosion of solutions for stochastic fractional partial differential equations driven by multiplicative noise. Stoch. Process. Appl. 124(5), 1974–2002 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  89. Romito, M.: Analysis of equilibrium states of Markov solutions to the 3D Navier-Stokes equations driven by additive noise. J. Stat. Phys. 131(3), 415–444 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  90. Romito, M.: Existence of martingale and stationary suitable weak solutions for a stochastic Navier-Stokes system. Stochastics 82(3), 327–337 (2010)

    MATH  MathSciNet  Google Scholar 

  91. Romito, M.: An almost sure energy inequality for Markov solutions to the 3D Navier-Stokes equations. In: Stochastic Partial Differential Equations and Applications. Quad. Mat., vol. 25, pp. 243–255. Dept. Math., Seconda Univ. Napoli, Caserta (2010)

    Google Scholar 

  92. Romito, M.: Critical strong Feller regularity for Markov solutions to the Navier–Stokes equations. J. Math. Anal. Appl. 384(1), 115–129 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  93. Romito, M.: The Martingale problem for Markov solutions to the Navier-Stokes equations. In: Seminar on Stochastic Analysis, Random Fields and Applications VI. Progr. Probab., vol. 63, pp. 227–244. Birkhäuser/Springer Basel AG, Basel (2011)

    Chapter  Google Scholar 

  94. Romito, M.: Uniqueness and blow-up for a stochastic viscous dyadic model. Probab. Theory Relat. Fields 158(3–4), 895–924 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  95. Romito, M., Xu, L.: Ergodicity of the 3D stochastic Navier-Stokes equations driven by mildly degenerate noise. Stoch. Process. Appl. 121(4), 673–700 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  96. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter, Berlin (1996)

    Book  MATH  Google Scholar 

  97. Scheffer, V.: Turbulence and Hausdorff Dimension, Proc. Conf, Univ. Paris-Sud. Orsay, 1975. Lecture Notes in Math., vol. 565, pp. 174–183. Springer, Berlin (1976)

    Google Scholar 

  98. Schilling, R., Partzsch, L.: Brownian Motion. An Introduction to Stochastic Processes. De Gruyter Textbook, de Gruyter, Berlin (2014)

    MATH  Google Scholar 

  99. Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  100. Siegert, M., Plischke, M.: Solid-on-solid models of molecular-beam epitaxy. Phys. Rev. E 50, 917–931 (1994)

    Article  Google Scholar 

  101. Simon, B.: The \(P(\phi )_{2}\) Euclidean (Quantum) Field Theory. Princeton Series in Physics. Princeton University Press, Princeton (1974)

    Google Scholar 

  102. Stannat, W.: Stochastic partial differential equations: Kolmogorov operators and invariant measures. Jahresber. Dtsch. Math.-Ver. 113(2), 81–109 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  103. Stein, O., Winkler, M.: Amorphous molecular beam epitaxy: global solutions and absorbing sets. Eur. J. Appl. Math. 16(6), 767–798 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  104. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (1979)

    MATH  Google Scholar 

  105. Sun, T., Guo, H., Grant, M.: Dynamics of driven interfaces with a conservation law. Phys. Rev. A 40, R6763–R6766 (1989)

    Article  Google Scholar 

  106. Swann, H.S.G.: The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in \(R_{3}\). Trans. Am. Math. Soc. 157, 373–397 (1971)

    MATH  MathSciNet  Google Scholar 

  107. Tao, T.: Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation. Anal. PDE 2(3), 361–366 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  108. Tao, T.: Finite time blowup for an averaged three-dimensional Navier-Stokes equation. J. Am. Math. Soc. (2015). doi:10.1090/jams/838

    Google Scholar 

  109. Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and Its Applications, vol. 2. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  110. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68. Springer, New York (1988)

    MATH  Google Scholar 

  111. van Neerven, J.: Stochastic Evolution Equations. ISEM Lecture Notes (2007/2008)

  112. Villain, J.: Continuum models of crystal growth from atomic beams with and without desorption. J. Phys. I France 1, 19–42 (1991)

    Article  Google Scholar 

  113. Walsh, J.B.: An introduction to stochastic partial differential equations. In: École d’été de probabilités de Saint-Flour, XIV—1984. Lecture Notes in Math., vol. 1180, pp. 265–439. Springer, Berlin (1986)

    Chapter  Google Scholar 

  114. Wang, C.: Well-posedness for the heat flow of biharmonic maps with rough initial data. J. Geom. Anal. 22(1), 223–243 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  115. Winkler, M.: Global solutions in higher dimensions to a fourth-order parabolic equation modeling epitaxial thin-film growth. Z. Angew. Math. Phys. 62(4), 575–608 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  116. Zhu, R., Zhu, X.: Three-dimensional Navier-Stokes equations driven by space-time white noise. J. Differ. Equ. 259(9), 4443–4508 (2015). doi:10.1016/j.jde.2015.06.002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Christian Nolde for the code used in the simulations presented in Fig. 1. We also like to thank Franco Flandoli for joint work on the inviscid surface growth and valuable comments that improved the manuscript, Martin Hairer for many interesting discussions, and Michael Winkler for discussions on possible blow up.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Blömker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blömker, D., Romito, M. Stochastic PDEs and Lack of Regularity. Jahresber. Dtsch. Math. Ver. 117, 233–286 (2015). https://doi.org/10.1365/s13291-015-0123-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s13291-015-0123-0

Keywords

Mathematics Subject Classification (2010)

Navigation