Skip to main content
Log in

The Willmore Conjecture

  • Survey Article
  • Published:
Jahresbericht der Deutschen Mathematiker-Vereinigung Aims and scope Submit manuscript

Abstract

The Willmore conjecture, proposed in 1965, concerns the quest to find the best torus of all. This problem has inspired a lot of mathematics over the years, helping bringing together ideas from subjects like conformal geometry, partial differential equations, algebraic geometry and geometric measure theory.

In this article we survey the history of the conjecture and our recent solution through the min-max approach. We finish with a discussion of some of the many open questions that remain in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren, F.: The theory of varifolds. Mimeographed notes, Princeton (1965)

  2. Ammann, B.: The Willmore conjecture for immersed tori with small curvature integral. Manuscr. Math. 101, 1–22 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Banchoff, T., Max, N.: Every sphere eversion has a quadruple point. In: Contributions to Analysis and Geometry, Baltimore, MD, 1980, pp. 191–209. Johns Hopkins University Press, Baltimore (1981)

    Google Scholar 

  4. Bauer, M., Kuwert, E.: Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Not., 553–576 (2003)

  5. Blaschke, W.: Vorlesungen über Differentialgeometrie III. Springer, Berlin (1929)

    MATH  Google Scholar 

  6. Blatt, S.: A singular example for the Willmore flow. Analysis (Munich) 29, 407–430 (2009)

    MATH  MathSciNet  Google Scholar 

  7. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Lévy, B.: Polygon Mesh Processing. AK Peters, Wellesley (2010)

    Google Scholar 

  8. Bryant, R.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20, 23–53 (1984)

    MATH  Google Scholar 

  9. Bryant, R.: Surfaces in conformal geometry. In: The Mathematical Heritage of Hermann Weyl. Proc. Sympos. Pure Math., vol. 48, pp. 227–240 (1988)

    Chapter  Google Scholar 

  10. Chen, B.-Y.: On the total curvature of immersed manifolds, III. Surfaces in Euclidean 4-space. Am. J. Math. 95, 636–642 (1973)

    Article  MATH  Google Scholar 

  11. Chen, B.-Y.: On the total curvature of immersed manifolds. V. C-surfaces in Euclidean m-space. Bull. Inst. Math. Acad. Sin. 9, 509–516 (1981)

    MATH  Google Scholar 

  12. Chern, S.-S., Lashof, R.: On the total curvature of immersed manifolds. II. Mich. Math. J. 5, 5–12 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  13. Colding, T., De Lellis, C.: The min-max construction of minimal surfaces. In: Surveys in Differential Geometry VIII, pp. 75–107. International Press, Somerville (2003)

    Google Scholar 

  14. Ejiri, E.: Willmore surfaces with a duality in S N(1). Proc. Lond. Math. Soc. 57, 383–416 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fáry, I.: Sur la courbure totale d’une courbe gauche faisant un nœud. Bull. Soc. Math. Fr. 77, 128–138 (1949)

    MATH  Google Scholar 

  16. Fenchel, W.: Über Krümmung und Windung geschlossener Raumkurven. Math. Ann. 101(1), 238–252 (1929)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ferus, D., Pedit, F.: S 1-Equivariant minimal tori in S 4 and S 1-equivariant Willmore tori in S 3. Math. Z. 204, 269–282 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Francis, G., Sullivan, J., Kusner, R., Brakke, K., Hartman, C., Chappell, G.: The minimax sphere eversion. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics, pp. 3–20. Springer, Berlin (1997)

    Chapter  Google Scholar 

  19. Germain, S.: Recherches sur la théorie des surfaces élastiques, Paris (1821). (Reprinted in 2013)

  20. Heintze, E., Karcher, H.: A general comparison theorem with applications to volume estimates for submanifolds. Ann. Sci. Éc. Norm. Super. 11, 451–470 (1978)

    MATH  MathSciNet  Google Scholar 

  21. Helfrich, W.: Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. 28, 693–703 (1973)

    MathSciNet  Google Scholar 

  22. Hertrich-Jeromin, U.: Introduction to Möbius Differential Geometry. London Mathematical Society Lecture Note Series, vol. 300. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  23. Hertrich-Jeromin, U., Pinkall, U.: Ein Beweis der Willmoreschen Vermutung für Kanaltori. J. Reine Angew. Math. 430, 21–34 (1992)

    MATH  MathSciNet  Google Scholar 

  24. Hsu, L., Kusner, R., Sullivan, J.: Minimizing the squared mean curvature integral for surfaces in space forms. Exp. Math. 1, 191–207 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kühnel, W., Pinkall, U.: On total mean curvatures. Quart. J. Math. Oxford Ser. (2) 37, 437–447 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kusner, R.: Conformal geometry and complete minimal surfaces. Bull. Am. Math. Soc. (N.S.) 17, 291–295 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kusner, R.: Comparison surfaces for the Willmore problem. Pac. J. Math. 138, 317–345 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kusner, R.: Estimates for the biharmonic energy on unbounded planar domains, and the existence of surfaces of every genus that minimize the squared-mean-curvature integral. In: Elliptic and Parabolic Methods in Geometry, pp. 67–72. AK Peters, Wellesley (1996)

    Google Scholar 

  29. Kuwert, E., Schätzle, R.: Removability of point singularities of Willmore surfaces. Ann. Math. 160, 315–357 (2004)

    Article  MATH  Google Scholar 

  30. Kuwert, E., Schätzle, R.: The Willmore Functional, Topics in Modern Regularity Theory. CRM Series, vol. 13, pp. 1–115. Ed. Norm., Pisa (2012)

    Book  Google Scholar 

  31. Kuwert, E., Li, Y., Schätzle, R.: The large genus limit of the infimum of the Willmore energy. Am. J. Math. 132, 37–51 (2010)

    Article  MATH  Google Scholar 

  32. Lamm, T., Nguyen, H.T.: Branched Willmore spheres. J. Reine Angew. Math. (2014, to appear). doi:10.1515/crelle-2013-0028

  33. Langer, J., Singer, D.: Curves in the hyperbolic plane and mean curvature of tori in 3-space. Bull. Lond. Math. Soc. 16, 531–534 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  34. Langer, J., Singer, D.: Curve-straightening in Riemannian manifolds. Ann. Glob. Anal. Geom. 5, 133–150 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  35. Langevin, R., Rosenberg, H.: On curvature integrals and knots. Topology 15, 405–416 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lawson, B.: Complete minimal surfaces in S 3. Ann. Math. (2) 92, 335–374 (1970)

    Article  MATH  Google Scholar 

  37. Li, P., Yau, S.-T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69, 269–291 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  38. Lott, N., Pullin, D.: Method for fairing B-spline surfaces. Comput. Aided Des. 20(10), 597–600 (1988)

    Article  MATH  Google Scholar 

  39. Marques, F.C., Neves, A.: Min-max theory and the Willmore conjecture. Ann. Math. (2) 179, 683–782 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  40. Mayer, U.F., Simonett, G.: A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow. Interfaces Free Bound. 4, 89–109 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  41. Michalet, X., Bensimon, D.: Vesicles of toroidal topology: Observed morphology and shape transformations. J. Phys. II France 5, 263–287 (1995)

    Article  Google Scholar 

  42. Milnor, J.W.: On the total curvature of knots. Ann. Math. (2) 52, 248–257 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  43. Montiel, S.: Willmore two-spheres in the four sphere. Trans. Am. Math. Soc. 352, 4449–4486 (2000)

    Article  MathSciNet  Google Scholar 

  44. Montiel, S., Ros, A.: Minimal immersions of surfaces by the first eigenfunctions and conformal area. Invent. Math. 83, 153–166 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  45. Montiel, S., Urbano, F.: A Willmore functional for compact surfaces in the complex projective plane. J. Reine Angew. Math. 546, 139–154 (2002)

    MATH  MathSciNet  Google Scholar 

  46. Musso, E.: Willmore surfaces in the four-sphere. Ann. Glob. Anal. Geom. 8, 21–41 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  47. Mutz, M., Bensimon, D.: Observation of toroidal vesicles. Phys. Rev. A 43, 4525–4527 (1991)

    Article  Google Scholar 

  48. Nitsche, J.C.C.: Boundary value problems for variational integrals involving surface curvatures. Q. Appl. Math. 51, 363–387 (1993)

    MATH  MathSciNet  Google Scholar 

  49. Peng, C.-.-K., Xiao, L.: Willmore surfaces and minimal surfaces with flat ends. In: Geometry and Topology of Submanifolds, X, Beijing/Berlin, 1999, pp. 259–265. World Sci. Publ., River Edge (2000)

    Google Scholar 

  50. Pinkall, U.: Hopf tori in S 3. Invent. Math. 81, 379–386 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  51. Pinkall, U., Sterling, I.: Willmore surfaces. Math. Intell. 9, 38–43 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  52. Pitts, J.: Existence and Regularity of Minimal Surfaces on Riemannian Manifolds. Mathematical Notes, vol. 27. Princeton University Press, Princeton (1981)

    MATH  Google Scholar 

  53. Poisson, S.D.: Mémoire sur les surfaces élastiques. Mém. Cl. Sci. Math. Phys. (Paris), 167–225 (1812)

  54. Ritoré, M., Ros, A.: Stable constant mean curvature tori and the isoperimetric problem in three space forms. Comment. Math. Helv. 67, 293–305 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  55. Rivière, T.: Analysis aspects of Willmore surfaces. Invent. Math. 174, 1–45 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  56. Rivière, T.: Conformally invariant variational problems (2012). arXiv:1206.2116 [math.AP]

  57. Ros, A.: The Willmore conjecture in the real projective space. Math. Res. Lett. 6, 487–493 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  58. Ros, A.: The isoperimetric and Willmore problems. In: Global Differential Geometry: The Mathematical Legacy of Alfred Gray, Bilbao, 2000. Contemp. Math., vol. 288, pp. 149–161. Am. Math. Soc., Providence (2001)

    Google Scholar 

  59. Shiohama, K., Takagi, R.: A characterization of a standard torus in E 3. J. Differ. Geom. 4, 477–485 (1970)

    MATH  MathSciNet  Google Scholar 

  60. Simon, L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1, 281–326 (1993)

    MATH  Google Scholar 

  61. Smale, S.: A classification of immersions of the two-sphere. Trans. Am. Math. Soc. 90, 281–290 (1958)

    Article  MathSciNet  Google Scholar 

  62. Thomsen, G.: Über konforme Geometrie, I: Grundlagen der konformen Flächentheorie. In: Abh. Math. Sem. Hamburg, pp. 31–56 (1924)

    Google Scholar 

  63. Topping, P.: Towards the Willmore conjecture. Calc. Var. Partial Differ. Equ. 11, 361–393 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  64. Urbano, F.: Minimal surfaces with low index in the three-dimensional sphere. Proc. Am. Math. Soc. 108, 989–992 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  65. Weiner, J.L.: On a problem of Chen, Willmore et al. Indiana Univ. Math. J. 27, 19–35 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  66. White, J.H.: A global invariant of conformal mappings in space. Proc. Am. Math. Soc. 38, 162–164 (1973)

    Article  MATH  Google Scholar 

  67. Willmore, T.J.: Note on embedded surfaces. An. Ştiinţ. Univ. ‘Al.I. Cuza’ Iaşi, Mat. (N.S.) 11B, 493–496 (1965)

    MathSciNet  Google Scholar 

  68. Willmore, T.J.: Mean curvature of Riemannian immersions. J. Lond. Math. Soc. (2) 3, 307–310 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  69. Willmore, T.J.: Riemannian Geometry. Oxford Science Publications. The Clarendon Press/Oxford University Press, New York (1993)

    MATH  Google Scholar 

  70. Willmore, T.J.: Surfaces in conformal geometry. Special issue in memory of Alfred Gray (1939–1998). Ann. Glob. Anal. Geom. 18, 255–264 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is grateful to École Polytechnique, École Normale Supérieure and Université Paris-Est (Marne-la-Vallée) for the hospitality during the writing of this paper.

Both authors are very grateful to Robert Bryant and Robert Kusner for their various remarks and suggestions that improved the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Neves.

Additional information

The first author was partly supported by CNPq-Brazil and FAPERJ. The second author was partly supported by Marie Curie IRG Grant and ERC Start Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, F.C., Neves, A. The Willmore Conjecture. Jahresber. Dtsch. Math. Ver. 116, 201–222 (2014). https://doi.org/10.1365/s13291-014-0104-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s13291-014-0104-8

Keywords

Mathematics Subject Classification

Navigation