Skip to main content
Log in

Thurston’s Vision and the Virtual Fibering Theorem for 3-Manifolds

  • Survey Article
  • Published:
Jahresbericht der Deutschen Mathematiker-Vereinigung Aims and scope Submit manuscript

Abstract

The vision and results of William Thurston (1946–2012) have shaped the theory of 3-dimensional manifolds for the last four decades. The high point was Perelman’s proof of Thurston’s Geometrization Conjecture which reduced 3-manifold topology for the most part to the study of hyperbolic 3-manifolds. In 1982 Thurston gave a list of 24 questions and challenges on hyperbolic 3-manifolds. The most daring one came to be known as the Virtual Fibering Conjecture. We will give some background for the conjecture and we will explain its precise content. We will then report on the recent proof of the conjecture by Ian Agol and Dani Wise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Dehn’s Lemma says that ‘if c is an embedded curve on the boundary of a 3-manifold N such that c bounds an immersed disk in N, then it already bounds an embedded disk in ∂N’. This statement goes back to Max Dehn [12] in 1910, but Hellmuth Kneser [28, p. 260] found a gap in the proof provided by Dehn. It then took another 30 years to find a correct proof.

  2. Here recall that throughout the paper we restrict ourselves to compact manifolds; that is why \(\mathbb{R}\) is missing from our list of 1-manifolds.

  3. This topic was also discussed by Klaus Ecker [13] in an earlier Jahresbericht.

  4. In the Poincaré disk model for hyperbolic geometry the space is given by an open disk in \(\mathbb{R} ^{2}\) and the geodesics are given by the segments of Euclidean circles which intersect the given disk orthogonally. This model of hyperbolic geometry inspired M.C. Escher to create his famous woodcuts Circle Limit I, II, III and IV.

  5. The Poincaré Conjecture in dimension four was proved by Michael Freedman [15] in 1982. More precisely, he showed that any simply connected closed, topological 4-manifold is homeomorphic to S 4. It is not known, whether any simply connected, closed, differential 4-manifold is diffeomorphic to S 4. Resolving that question is often considered as the hardest problem in low-dimensional topology.

  6. Riley [46] points out that the complement of the figure-8 knot is in fact the 2-fold cover of Gieseking’s example. Hugo Gieseking was killed in France in 1915, shortly after his work on hyperbolic 3-manifold. It is conceivable that hyperbolic structures on knot complements would have been discovered much earlier if it had not been for World War I.

  7. For knots the conjecture was foreshadowed by Riley, see [46] for Riley’s account.

  8. The ICM took place in 1983 in Warsaw. It was of course supposed to take place in 1982 but it was postponed by one year because of martial law in Poland which was in effect from December 1981 to July 1983.

  9. Interestingly the phenomenon that ‘most objects are hyperbolic’ also occurs in the context of group theory. Mikhail Gromov [21] showed that in a precise sense a generic finitely presented group is ‘word hyperbolic’.

  10. It is characteristic of Ian Agol’s unassuming character that the first time he publicly mentioned this result was towards the end of an introductory lecture for graduate students in Paris. Thanks to the digital camera of the author and a blog the news of Agol’s theorem spread across the world of 3-manifold topologists within a few hours [60].

References

  1. Adyan, S.I.: Algorithmic unsolvability of problems of recognition of certain properties of groups. Dokl. Akad. Nauk SSSR 103, 533–535 (1955)

    MATH  MathSciNet  Google Scholar 

  2. Agol, I.: Criteria for virtual fibering. Topology 1, 269–284 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Agol, I.: The virtual Haken conjecture. Doc. Math. 18, 1045–1087 (2013). With an appendix by Agol, I., Groves, D. and Manning, J.

    MATH  MathSciNet  Google Scholar 

  4. Agol, I.: Virtual properties of 3-manifolds. Preprint (2014)

  5. Aschenbrenner, M., Friedl, S., Wilton, H.: 3-Manifold groups. Preprint (2012). arXiv:1205.0202

  6. Aschenbrenner, M., Friedl, S., Wilton, H.: Decision problems for 3-manifolds and their fundamental groups. Preprint (2013). arXiv:1405.6274

  7. Bergeron, N.: Toute variété de dimension 3 compacte et asphérique est virtuellement de Haken (d’après Ian Agol et Daniel T. Wise), Séminaire Bourbaki, Janvier 2014, 66ème année, 2013–14, no. 1078

  8. Bergeron, N., Wise, D.: A boundary criterion for cubulation. Am. J. Math. 134, 843–859 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bestvina, M.: Geometric group theory and 3-manifolds hand in hand: the fulfillment of Thurston’s vision. Bull. Am. Math. Soc. 51, 53–70 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bowden, J.: Symplectic 4-manifolds with fixed point free circle actions. Proc. Am. Math. Soc. 142, 3299–3303 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Collins, D.J., Zieschang, H.: Combinatorial group theory and fundamental groups. In: Algebra, VII. Encyclopaedia Math. Sci., vol. 58, pp. 1–166. Springer, Berlin (1993)

    Google Scholar 

  12. Dehn, M.: Über die Topologie des dreidimensionalen Raumes. Math. Ann. 69(1), 137–168 (1910)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ecker, K.: Heat equations in geometry and topology. Jahresber. Dtsch. Math.-Ver. 110, 117–141 (2008)

    MATH  MathSciNet  Google Scholar 

  14. Francis, G.: A Topological Picturebook. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  15. Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom. 17(3), 357–453 (1982)

    MATH  Google Scholar 

  16. Friedl, S., Silver, D., Williams, S.: Splittings of knot groups. Math. Ann. Preprint (2013, to appear)

  17. Friedl, S., Vidussi, S.: A vanishing theorem for twisted Alexander polynomials with applications to symplectic 4-manifolds. J. Eur. Math. Soc. 15, 2027–2041 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Friedl, S., Vidussi, S.: Minimal genus in 4-manifolds with a free circle action. Adv. Math. 250, 570–587 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gabai, D.: On 3-manifolds finitely covered by surface bundles. In: Low-Dimensional Topology and Kleinian Groups. London Math. Soc. Lecture Note Ser., vol. 112, pp. 145–155. Cambridge Univ. Press, Cambridge (1986). Coventry/Durham, 1984

    Google Scholar 

  20. Gieseking, H.: Analytische Untersuchungen über Topologische Gruppen. Thesis, Münster (1912)

    MATH  Google Scholar 

  21. Gromov, M.: Hyperbolic groups, essays in group theory. Publ. Math. 8, 75–263 (1987)

    MathSciNet  Google Scholar 

  22. Hagen, M., Wise, D.: Cubulating hyperbolic free-by-cyclic groups: the general case. Preprint (2014)

  23. Haglund, F., Wise, D.: Special cube complexes. Geom. Funct. Anal. 17(5), 1551–1620 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Haken, W.: Über das Homöomorphieproblem der 3-Mannigfaltigkeiten, I. Math. Z. 80, 89–120 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    MATH  Google Scholar 

  26. Jones, V.F.R.: Polynomial invariant for knots via von Neumann algebra. Bull. Am. Math. Soc. 12, 103–111 (1987)

    Article  Google Scholar 

  27. Kahn, J., Markovic, V.: Immersing almost geodesic surfaces in a closed hyperbolic three manifold. Ann. Math. 175, 1127–1190 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kneser, H.: Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. Jahresber. Dtsch. Math.-Ver. 38, 248–260 (1929)

    MATH  Google Scholar 

  29. Kronheimer, P.B., Mrowka, T.S.: Khovanov homology is an unknot-detector. Publ. Math. IHÉS 113, 97–208 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lackenby, M.: Finite covering spaces of 3-manifolds. In: Bhatia, R., Pal, A., Rangarajan, G., Srinivas, V. (eds.) Proceedings of the International Congress of Mathematicians 2010 (2011)

    Google Scholar 

  31. Lackenby, M.: Elementary knot theory. To be published by the Clay Mathematics Institute. http://people.maths.ox.ac.uk/lackenby/ekt11214.pdf

  32. Löbell, F.: Beispiele geschlossener dreidimensionaler Clifford–Kleinscher Räume negativer Krümmung. Ber. Verh. Sächs. Akad. Wiss. Leipz., Math.-Phys. Kl. 83, 167–174 (1931)

    Google Scholar 

  33. Maher, J.: Random Heegaard splittings. Topology 3, 997–1025 (2010). 1753–8424

    Article  MATH  MathSciNet  Google Scholar 

  34. Markovic, V.: Criterion for Cannon’s conjecture. Geom. Funct. Anal. 23, 1035–1061 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. Morgan, J., Tian, G.: Ricci Flow and the Poincaré Conjecture. Clay Mathematics Monographs, vol. 3. Am. Math. Soc./Clay Mathematics Institute, Providence/Cambridge (2007)

    MATH  Google Scholar 

  36. Mostow, G.D.: Quasi-conformal mappings in n-space and the rigidity of the hyperbolic space forms. Publ. Math. IHES 34, 53–104 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  37. Otal, J.-P.: William P. Thurston: “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry”. Jahresber. Dtsch. Math.-Ver. 116, 3–20 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  38. Papakyriakopoulos, C.: On Dehn’s lemma and the asphericity of knots. Ann. Math. 66, 1–26 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  39. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (2002). arXiv:math/0211159

  40. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds (2003). arXiv:math/0307245

  41. Perelman, G.: Ricci flow with surgery on three-manifolds (2003). arXiv:math/0303109

  42. Poincaré, H.: Cinquiéme complément à l’analysis situs. Rend. Circ. Mat. Palermo 18, 45–110 (1904)

    Article  MATH  Google Scholar 

  43. Prasad, G.: Strong rigidity of Q-rank 1 lattices. Invent. Math. 21, 255–286 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  44. Przytycki, P., Wise, D.: Mixed 3-manifolds are virtually special. Preprint (2012)

  45. Riley, R.: Discrete parabolic representations of link groups. Mathematika 22(2), 141–150 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  46. Riley, R.: A personal account of the discovery of hyperbolic structures on some knot complements. Expo. Math. 31(2), 104–115 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  47. Rolfsen, D.: Knots and Links, Corrected Reprint of the 1976 Original. Mathematics Lecture Series, vol. 7. Publish or Perish, Inc., Houston (1990)

    Google Scholar 

  48. Sageev, M.: Codimension-1 subgroups and splittings of groups. J. Algebra 189(2), 377–389 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  49. Seifert, H.: Topologie dreidimensionaler gefaserter Räume. Acta Math. 60, 147–238 (1933)

    Article  MathSciNet  Google Scholar 

  50. Seifert, H., Weber, C.: Die beiden Dodekaederräume. Math. Z. 37, 237–253 (1933)

    Article  MathSciNet  Google Scholar 

  51. Smale, S.: Generalized Poincaré’s conjecture in dimensions greater than four. Ann. Math. 74(2), 391–406 (1961). 2nd Ser.

    Article  MATH  MathSciNet  Google Scholar 

  52. Stillwell, J.: Geometry of Surfaces. Universitext. Springer, New York (1992)

    Book  MATH  Google Scholar 

  53. Stillwell, J.: Classical Topology and Combinatorial Group Theory. Springer, New York (1993)

    Book  MATH  Google Scholar 

  54. Sun, H.: Virtual homological torsion of closed hyperbolic 3-manifolds. Preprint (2013)

  55. Thurston, W.P.: The Geometry and Topology of 3-Manifolds. Princeton Lecture Notes (1979). Available at http://www.msri.org/publications/books/gt3m/

    Google Scholar 

  56. Thurston, W.P.: Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull., New Ser., Am. Math. Soc. 6, 357–379 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  57. Thurston, W.P.: On proof and progress in mathematics. Bull. Am. Math. Soc. 30, 161–177 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  58. Volkert, K.: The early history of Poincaré’s conjecture, Henri Poincaré. In: Greffe, J.-L., Heinzmann, G., Lorenz, K. (eds.) Science and Philosophy, pp. 241–250. Akademie Verlag, Berlin (1996)

    Google Scholar 

  59. Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. Math. (2) 87, 56–88 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  60. Wilton, H.: … or Agol’s Theorem? http://ldtopology.wordpress.com/2012/03/12/or-agols-theorem/

  61. Wise, D.: The structure of groups with a quasi-convex hierarchy. Electron. Res. Announc. Am. Math. Soc. 16, 44–55 (2009)

    MATH  MathSciNet  Google Scholar 

  62. Wise, D.: The structure of groups with a quasi-convex hierarchy. Preprint (2012). 189 pp. http://www.math.u-psud.fr/~haglund/Hierarchy29Feb2012.pdf

  63. Wise, D.: From riches to RAAGs: 3-manifolds, right–angled Artin groups, and cubical geometry. CBMS Regional Conference Series in Mathematics (2012)

Download references

Acknowledgements

I am very grateful to Matthias Aschenbrenner, Steve Boyer, Hermann Friedl, Hansjörg Geiges, Mark Powell, Saul Schleimer, Dan Silver and Raphael Zentner for making many helpful suggestions which greatly improved the exposition. I also wish to thank András Juhász at Keble College and Baskar Balasubramanyam at IISER Pune for providing me with the opportunity to give non-technical talks on the Virtual Fibering Theorem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Friedl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedl, S. Thurston’s Vision and the Virtual Fibering Theorem for 3-Manifolds. Jahresber. Dtsch. Math. Ver. 116, 223–241 (2014). https://doi.org/10.1365/s13291-014-0102-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s13291-014-0102-x

Keywords

Mathematics Subject Classification (2010)

Navigation