Skip to main content
Log in

Application of DLLME to Isolation and Concentration of Non-Steroidal Anti-Inflammatory Drugs in Environmental Water Samples

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Dispersive liquid–liquid microextraction (DLLME) coupled with liquid chromatography-tandem mass spectrometry detection was applied for determination of selected anti-inflammatory pharmaceuticals: ibuprofen, ketoprofen, naproxen and diclofenac. Development of DLLME procedure included optimisation of several important parameters such as kind and volume of extracting and dispersive solvents as well as sample pH. Under optimised conditions a two-step extraction with sonication was used. Chloroform was applied as the extracting and acetone as dispersing solvent. Calibration curves ranges were 1–500 μg L−1 for naproxen and ibuprofen and 0.25–500 μg L−1 for ketoprofen and diclofenac with correlation coefficients at least 0.997. Limits of quantitation were from 0.5 to 10 ng L−1. The developed analytical method was employed for determination of ibubrofen, ketoprofen, naproxen and diclofenac in river and tap water samples. The results showed that DLLME is a simple, rapid and sensitive analytical technique for the pre-concentration of trace amounts of pharmaceuticals in environmental water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marchese S, Perret D, Gentili A, Curini R, Pastori F (2003) Chromatographia 58:263–269. doi:10.1365/s10337-003-0052-4

    CAS  Google Scholar 

  2. Hernando MD, Heath E, Petrovic M, Barceló D (2006) Anal Bioanal Chem 385:985–991. doi:10.1007/s00216-006-0394-5

    Article  CAS  Google Scholar 

  3. H-Ch Chen, Wang P-L, Ding W-H (2008) Chemosphere 72:863–869. doi:10.1016/j.chemosphere.2008.04.005

    Article  Google Scholar 

  4. Zhang S, Zhang Q, Darisaw S, Ehie O, Wang G (2007) Chemosphere 66:1057–1069. doi:10.1016/j.chemosphere.2006.06.067

    Article  CAS  Google Scholar 

  5. Wiegel S, Aulinger A, Brockmeyer R, Harms H, Löffler J, Reincke H, Schmidt R, Stachel B, von Tümg W, Wanke A (2004) Chemosphere 57:107–126. doi:10.1016/j.chemosphere.2004.05.017

    Article  CAS  Google Scholar 

  6. Debska J, Kot-Wasik A, Namiesnik J (2005) J Sep Sci 28:2419–2426. doi:10.1002/jssc.200400055

    Article  CAS  Google Scholar 

  7. Sacher F, Lange FT, Brauch H-J, Blankenhorn I (2001) J Chromatogr A 938:199–210. doi:10.1016/s0021-9673(01)01266-3

    Article  CAS  Google Scholar 

  8. Koutsouba V, TH Heberer, Huhrmann B, Schmidt-Baumler K, Tsipi D, Hiskia A (2003) Chemosphere 51:69–75. doi:10.1016/s0045-6535(02)00819-6

    Article  CAS  Google Scholar 

  9. Miao X-S, Koenig BG, CD Metcalfe (2002) J Chromatogr A 952:139–147. doi:10.1016/s0021-9673(02)00088-2

    Article  CAS  Google Scholar 

  10. Gómez MJ, Martínez Bueno MJ, Lacorte S, Fernández-Alba AR, Agüera A (2007) Chemosphere 66:993–1002. doi:10.1016/j.chemosphere.2006.07.051

    Article  Google Scholar 

  11. Trenholm RA, Vanderford BJ, Holady JC, Rexing DJ, Snyder SA (2006) Chemosphere 65:1990–1998. doi:10.1016/j.chemosphere.2006.07.004

    Article  CAS  Google Scholar 

  12. Zhang J, Lee HK (2009) J Chromatogr A 1216:7527–7532. doi:10.1016/j.chroma.2009.03.051

    Article  CAS  Google Scholar 

  13. Gentili A (2007) Anal Bioanal Chem 387:1185–1202. doi:10.1007/s00216-006-0821-7

    Article  CAS  Google Scholar 

  14. Seitz W, Schultz W, Weber WH (2006) Rapid Commun Mass Spectrom 20:2281–2285. doi:10.1002/rcm.2554

    Article  CAS  Google Scholar 

  15. Torres Padrón ME, Sosa Ferrera Z, Santana Rodríguez JJ (2009) Biomed Chromatogr 23:1175–1185. doi:10.1002/bmc.1240

    Article  Google Scholar 

  16. Stafiej A, Pyrzynska K, Regan F (2007) J Sep Sci 30:985–991. doi:10.1002/jssc.200600433

    Article  CAS  Google Scholar 

  17. Es’haghi Z (2009) Anal Chim Acta 641:83–88. doi:10.1016/j.aca.2009.03.043

    Article  Google Scholar 

  18. Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1–9. doi:10.1016/j.chroma.2006.03.007

    Article  CAS  Google Scholar 

  19. Berijani S, Assadi Y, Anbia M, Milani Hosseini MR, Aghaee E (2006) J Chromatogr A 1123:1–9. doi:10.1016/j.chroma.2006.05.010

    Article  CAS  Google Scholar 

  20. Nagaraju D, Huang S-D (2007) J Chromatogr A 1161:89–97. doi:10.1016/j.chroma.2007.05.065

    Article  CAS  Google Scholar 

  21. Wu Q, Li Y, Ch Wang, Liu Z, Zang X, Zhou X, Wang Z (2009) Anal Chim Acta 638:139–145. doi:10.1016/j.aca.2009.02.017

    Article  CAS  Google Scholar 

  22. Xiong J, Hu B (2008) J Chromatogr A 1193:7–18. doi:10.1016/j.chroma.2008.03.072

    Article  CAS  Google Scholar 

  23. Liu Y, Zhao E, Zhu W, Gao H, Zhou Z (2009) J Chromatogr A 1216:885–891. doi:10.1016/j.chroma.2008.11.076

    Article  CAS  Google Scholar 

  24. Farhadi K, Matin AA, Hashemi P (2009) Chromatographia 69:45–49. doi:10.1365/s10337-008-0815-z

    Article  CAS  Google Scholar 

  25. Fu L, Liu X, Hu J, Zhao X, Wang H, Wang X (2009) Anal Chim Acta 632:289–295. doi:10.1016/j.aca.2008.11.020

    Article  CAS  Google Scholar 

  26. Farahani H, Norouzi P, Dinarvand R, Ganjali MR (2007) J Chromatogr A 1172:105–112. DOI:10.1016/j.chroma.2007.10.001

    Google Scholar 

  27. Liang P, Xu J, Li Q (2008) Anal Chim Acta 609:53–58. doi:10.1016/j.aca.2007.12.025

    Article  CAS  Google Scholar 

  28. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Anal Chem 75:3019–3030. DOI:10.1021/ac020361s

    Google Scholar 

  29. Pusvaskiene E, Januskevic B, Prichodka A, Vickackaite V (2009) Chromatographia 69:271–276. doi:10.1365/s10337-008-0885-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant number DS-31-201/2010 from the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Zgoła-Grześkowiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zgoła-Grześkowiak, A. Application of DLLME to Isolation and Concentration of Non-Steroidal Anti-Inflammatory Drugs in Environmental Water Samples. Chroma 72, 671–678 (2010). https://doi.org/10.1365/s10337-010-1702-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-010-1702-y

Keywords

Navigation