Skip to main content
Log in

Characterization of Convection for Molecularly Imprinted Monolith

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Convection of molecularly imprinted polymers monolith in LC mode was discussed in this paper. On the MIPs monolith reported here, a flat van Deemter plot of height equivalent to a theoretical plate (HETP) versus superficial velocity was observed. This typical behavior, similar to perfusion packings, suggests that the unique pore structure of the MIPs monolith allowed convection-enhanced mass transfer. Column parameters, e.g., external porosities, internal porosity, column permeability and equivalent sphere dimension, were obtained. Intraparticle Peclet number (λ) was used to characterize the convection in the monolith. In addition, a ratio of the numbers of transfer units, T, for diffusion in the micropores and through-pores has been introduced to quantify the relative importance of the contribution from convection and diffusion to mass transfer. The results show that the flow in a MIP monolith is extremely sensitive to pore size distribution and can be tuned by polymerization parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wulff G (2002) Chem Rev 102:1–27

    Article  CAS  Google Scholar 

  2. Ye L, Haupt K (2004) Anal Bioanal Chem 378:1887–1897

    Article  CAS  Google Scholar 

  3. Haupt K (2003) Chem Commun pp 171–178

  4. Pichon V (2007) J Chromatogr A 1152:41–53

    Article  CAS  Google Scholar 

  5. Zhang H, Ye L, Mosbach K (2006) J Mol Recognit 19:248–259

    Article  CAS  Google Scholar 

  6. Perez N, Whitcombe MJ, Vulfson EN (2001) Macromolecules 34:830–836

    Article  CAS  Google Scholar 

  7. Yilmaz E, Haupt K, Mosbach K (2000) Angew Chem Int Ed 39:2115–2118

    Article  CAS  Google Scholar 

  8. Sulitzky C, Ruckert B, Hall AJ, Lanza F, Unger K, Sellergren B (2002) Macromolecules 35:79–91

    Article  CAS  Google Scholar 

  9. Titirici MM, Sellergren B (2006) Chem Mater 18:1773–1779

    Article  CAS  Google Scholar 

  10. Ou J, Li X, Feng S, Dong J, Dong X, Kong L, Ye M, Zou H (2007) Anal Chem 79:639–646

    Article  CAS  Google Scholar 

  11. Chen Y, Kele M, Sajonz P, Sellergren B, Guiochon G (1999) Anal Chem 71:928–938

    Article  CAS  Google Scholar 

  12. Rodrigues AE, Ahn BJ, Zoulalian A (1982) AIChE J 28:541–546

    Article  CAS  Google Scholar 

  13. Rodrigues AE, Lu ZP, Loureiro JM (1991) Chem Eng Sci 46:2765–2773

    Article  CAS  Google Scholar 

  14. Rodrigues AE, Lopes JC, Lu ZP, Loureiro JM, Dias MM (1992) J Chromatogr A 590:93–100

    Article  CAS  Google Scholar 

  15. Rodrigues AE (1993) LC GC 6:20–29

    Google Scholar 

  16. Afeyan NB, Gordon NF, Mazsaroff I, Varady L, Fulton SP, Yang YB, Regnier FE (1990) J Chromatogr A 519:1–29

    Article  CAS  Google Scholar 

  17. Regnier FE (1991) Nature 350:634–635

    Article  CAS  Google Scholar 

  18. Guiochon G (2007) J Chromatogr A 1168:101–168

    Article  CAS  Google Scholar 

  19. Svec F, Fréchet JMJ (1996) Science 273:205–211

    Article  CAS  Google Scholar 

  20. Tanaka N, Kobayashi H, Nakanishi K, Minakuchi H, Ishizuka N (2001) Anal Chem 73:421A–429A

    Article  Google Scholar 

  21. Matsui J, Kato T, Takeuchi T, Suzukit M, Yokoyama K, Tamiya E, Karube I (1993) Anal Chem 65:2223–2224

    Article  CAS  Google Scholar 

  22. Sellergren B (1994) Anal Chem 66:1578–1582

    Article  CAS  Google Scholar 

  23. Huang X, Qin F, Chen X, Liu Y, Zou H (2004) J Chromatogr B 804:13–18

    Article  CAS  Google Scholar 

  24. Seebach A, Seidel A (2007) Anal Chim Acta 591:57–62

    Article  CAS  Google Scholar 

  25. Kim H, Guiochon G (2005) Anal Chem 77:93–102

    Article  CAS  Google Scholar 

  26. Meyers JJ, Liapis AI (1999) J Chromatogr A 852:3–23

    Article  CAS  Google Scholar 

  27. Pfeiffer JF, Chen JC, Hsu JT (1996) AIChE J 42:932–939

    Article  CAS  Google Scholar 

  28. Vervoort N, Gazil P, Baron GV, Desmet G (2003) Anal Chem 75:843–850

    Article  CAS  Google Scholar 

  29. Gazil P, Vervoort N, Baron GV, Desmet G (2004) J Sep Sci 27:887–896

    Article  CAS  Google Scholar 

  30. Liapis AI, Meyers JJ, Crosser OK (1999) J Chromatogr A 865:13–25

    Article  CAS  Google Scholar 

  31. Persson P, Baybak O, Plieva F, Galaev IY, Mattiasson B, Nilsson B, Axelsson A (2004) Biotechnol Bioeng 88:224–236

    Article  CAS  Google Scholar 

  32. Hahn R, Jungbauer A (2000) Anal Chem 72:4853–4858

    Article  CAS  Google Scholar 

  33. Rodrigues AE, Mata VG, Zabka M, Pais L (2003) Flow and mass transfer. In: Svec F, Tennikova TB, Deyl Z (eds) Monolith material: preparation, properties and applications. Series Journal of Chromatography Library, Vol 67. Elsevier, Amsterdam, pp 325–350

  34. Zabka M, Gomes PS, Rodrigues AE (2008) Sep Purif Technol 63:324–333

    Article  CAS  Google Scholar 

  35. Zabka M, Minceva M, Rodrigues AE (2007) J Biochem Biophys Methods 70:95–105

    Article  CAS  Google Scholar 

  36. Huang YP, Zhang SJ, Wu X, Zhang QW, Liu ZS (2009) Chromatographia 70:691–698

    Article  CAS  Google Scholar 

  37. Li Z, Gu Y, Gu T (1998) Biochem Eng J 2:145–155

    Article  CAS  Google Scholar 

  38. Leitão A, Li M, Rodrigues AE (2002) Biochem Eng J 11:33–48

    Article  Google Scholar 

  39. Zabka M, Minceva M, Rodrigues AE (2006) Chem Eng Process 45:150–160

    Article  CAS  Google Scholar 

  40. Gusev I, Huang X, Horváth C (1999) J Chromatogr A 855:273–290

    Article  CAS  Google Scholar 

  41. Heeter GA, Liapis AI (1996) J Chromatogr A 761:35–40

    Article  Google Scholar 

  42. Whitney D, McCoy M, Gordon N, Afeyan N (1998) J Chromatogr A 807:165–184

    Article  CAS  Google Scholar 

  43. Carta G, Rodrigues AE (1993) Chem Eng Sci 48:3927–3935

    Article  CAS  Google Scholar 

  44. Rodrigues AE, Lu ZP, Loureiro JM, Carta G (1993) J Chromatogr A 653:189–198

    Article  CAS  Google Scholar 

  45. Leitão A, Rodrigues AE (1999) Biochem Eng J 3:131–139

    Article  Google Scholar 

  46. Frey DD, Schweinheim E, Horváth C (1993) Biotechnol Prog 9:273–284

    Article  CAS  Google Scholar 

  47. Leinweber FC, Lubda D, Cabrera K, Tallarek U (2002) Anal Chem 74:2470–2477

    Article  CAS  Google Scholar 

  48. Cavazzini A, Kaczmarski K, Szabelski P, Zhou D, Liu X, Guiochon G (2001) Anal Chem 73:5704–5715

    Article  CAS  Google Scholar 

  49. Teja AS, Rice P (1981) Ind Eng Chem Fundam 20:77–81

    Article  CAS  Google Scholar 

  50. Rodrigues AE, Chenou C, Rendueles de la Vega M (1996) Chem Eng J 61:191–201

    CAS  Google Scholar 

  51. Piletsky SA, Mijangos I, Guerreiro A, Piletska EV, Chianella I, Karim K, Turner APF (2005) Macromolecules 38:1410–1414

    Article  CAS  Google Scholar 

  52. Svec F, Fréchet JMJ (1995) Chem Mater 7:707–715

    Article  CAS  Google Scholar 

  53. Haginaka J, Futagami A (2008) J Chromatogr A 1185:258–262

    Article  CAS  Google Scholar 

  54. Zhang ML, Xie JP, Zhou Q, Chen GQ, Liu Z (2003) J Chromatogr A 984:173–183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 20575045) and Natural Science Foundation of Tianjin (No. 08JCYBJC02000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Sheng Liu.

Glossary

B b

Column permeability

B p

Particle permeability

b

Retention parameter defined with 1 + (1 − ε p) m/ε p

C

Experimental C-term mass transfer parameter in van Deemter equation

D

Effective pore diffusivity

D c

Effective diffusivity in micropore

D eff

Effective diffusivity in throughpores

D em

Effective diffusivity in the microparticle pores

D m

Molecular diffusivity

d pore

Equivalent pore size

d m

Diameter of the gel microspheres

d disp

Equivalent sphere dimensions

m

Retention parameter defined in Eq.  14

K

Equilibrium distribution coefficient

K

Adsorption factor

k

Boltzmann constant

k

Capacity factor

L

Column length

l

Half-thickness of the slab

M

Molecular weight of the solvent

n m

Mass transfer unit for diffusion in micropores

n t

Mass transfer unit for diffusion in throughpores

ΔP

Pressure drop

Q

Volume flowrate

r p

Half-thickness of the slab in bidispersed pore model

r c

Radius of micropores \( \left( { = {\frac{1}{2}}d_{\text{m}} } \right) \)

r

Molecular radius

T

Ratio of the numbers of transfer units for diffusion in the microparticles and throughpores

t 0

Retention time of a unretained substance, thiourea

t d

Retention time of very large molecules, blue dextran

u 0

Bed superficial velocity

V m

Molar volume of the adsorbate

Greek letters

 

α

Split ratio

β

Phase ratio

γ

Internal tortuosity factor

ε e

External porosity

ε p

Internal porosity

ε t

Total porosity

ε m

Porosity of microparticle

η

Viscosity of the mobile phase

λ

Intraparticle Peclet number

v 0

Pore flow velocity

ϕ

Constant that accounts for solute–solvent interactions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YP., Zhang, SJ., Zhao, L. et al. Characterization of Convection for Molecularly Imprinted Monolith. Chroma 71, 559–569 (2010). https://doi.org/10.1365/s10337-010-1513-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-010-1513-1

Keywords

Navigation