Skip to main content
Log in

Novel Vinylpyridine Based Cationic MIP Monoliths for Enantiomer Separation in CEC

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Cationic vinylpyridine based molecularly imprinted polymer monoliths were, for the first time, applied to enantiomer separation using capillary electrochromatography. In order to map the synthesis conditions under which superporous monoliths are obtained, capillary columns were prepared by an in situ polymerization technique using varying monomer and porogen compositions. Both electrolyte pH and percentage of the organic modifier acetonitrile were found to affect the electrochromatographic behaviour on such columns. An interesting observation is that the electroosmotic flow changed direction from cathodic at high pH to anodic at low pH of the electrolyte, opening up the opportunity to manipulate the flow. This is attributed to the vinylpyridine based MIP becomes protonated and positively charged at low pH, whereas it is uncharged at high pH where instead negatively charged silanol groups drive the electroosmotic flow. Improved enantiomer resolution, as well as increased retention, was observed when the concentration of acetonitrile in the electrolyte decreased, indicating a significant element of hydrophobic effects in the molecular recognition of the imprinted enantiomer. Enantiomer separation of the non-steroidal anti-inflammatory drug ibuprofen was studied and efficiencies as high as 30,000 plates per meter with an asymmetry factor below 4 were obtained for the last eluting imprinted enantiomer. These values are better than that obtained generally using MIP based chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sellergren B (eds) (2001) Molecularly imprinted polymers: man-made mimics of antibodies and their applications in analytical chemistry, Elsevier, New York

  2. Mosbach K (1994) Trends Biochem Sci 19:9–14. doi:10.1016/0968-0004(94)90166-X

    Article  CAS  Google Scholar 

  3. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA et al (2006) J Mol Recognit 19:106–180. doi:10.1002/jmr.760

    Article  CAS  Google Scholar 

  4. Sellergren B (2001) J Chromatogr A 906:227–252. doi:10.1016/S0021-9673(00)00929-8

    Article  CAS  Google Scholar 

  5. Kim H, Kaczmarski K, Guiochon G (2006) Chem Eng Sci 61:5249–5267. doi:10.1016/j.ces.2006.03.043

    Article  CAS  Google Scholar 

  6. Tóth B, Pap T, Horvath V, Horvai G (2006) J Chromatogr A 1119:29–33. doi:10.1016/j.chroma.2005.10.048

    Article  Google Scholar 

  7. Umpleby RJII, Baxter SC, Rampey AM, Rushton GT, Chen Y, Shimizu KD (2004) J Chromatogr B Analyt Technol Biomed Life Sci 804:141–149. doi:10.1016/j.jchromb.2004.01.064

    Article  CAS  Google Scholar 

  8. Jorgenson JW, Lukacs KD (1981) J Chromatogr A 218:209–216. doi:10.1016/S0021-9673(00)82057-9

    Article  CAS  Google Scholar 

  9. Cikalo MG, Bartle KD, Robson MM, Myers P, Eubery MR (1998) Analyst (Lond) 123:87R–102R. doi:10.1039/a801148f

    Article  CAS  Google Scholar 

  10. Lin JM, Nakagama T, Uchiyama K, Hobo T (1996) Chromatographia 43:585–591. doi:10.1007/BF02292972

    Article  CAS  Google Scholar 

  11. Chirica G, Remcho VT (1999) Electrophoresis 20:50–56. doi:10.1002/(SICI)1522-2683(19990101)20:1<50::AID-ELPS50>3.0.CO;2-O

    Article  CAS  Google Scholar 

  12. Quaglia M, De Lorenzi E, Sulitzky C, Caccialanza G, Sellergren B (2003) Electrophoresis 24:952–957. doi:10.1002/elps.200390138

    Article  CAS  Google Scholar 

  13. Quaglia M, De Lorenzi E, Sulitzky C, Massolini G, Sellergren B (2001) Analyst (Lond) 126:1495–1498. doi:10.1039/b105401p

    Article  CAS  Google Scholar 

  14. Schweitz L, Andersson LI, Nilsson S (1997) Anal Chem 69:1179–1183. doi:10.1021/ac9607929

    Article  CAS  Google Scholar 

  15. Tan JZ, Remcho VT (1998) Electrophoresis 19:2055–2060. doi:10.1002/elps.1150191203

    Article  CAS  Google Scholar 

  16. Schweitz L (2002) Anal Chem 74:1192–1196. doi:10.1021/ac0156520

    Article  CAS  Google Scholar 

  17. Amini A, Paulsen-Sorman U, Westerlund D (1999) Chromatographia 50:497–506. doi:10.1007/BF02490748

    Article  CAS  Google Scholar 

  18. Spégel P, Schweitz L, Nilsson S (2003) Anal Chem 75:6608–6613. doi:10.1021/ac034732w

    Article  Google Scholar 

  19. Spégel P, Schweitz L, Nilsson S (2001) Electrophoresis 22:3833–3841. doi:10.1002/1522-2683(200109)22:17<3833::AID-ELPS3833>3.0.CO;2-9

    Article  Google Scholar 

  20. Schweitz L, Spégel P, Nilsson S (2000) Analyst Lond 125:1899–1901. doi:10.1039/b007221o

    Article  CAS  Google Scholar 

  21. de Boer T, Mol R, de Zeeuw RA, de Jong GJ, Sherrington DC, Cormack PAG et al (2002) Electrophoresis 23:1296–1300. doi:10.1002/1522-2683(200205)23:9<1296::AID-ELPS1296>3.0.CO;2-2

    Article  Google Scholar 

  22. Haginaka J (2002) Bioseparations 10:337–351. doi:10.1023/A:1021550005389

    Article  Google Scholar 

  23. Sellergren B, Lepistö M, Mosbach K (1988) J Am Chem Soc 110:5853–5860. doi:10.1021/ja00225a041

    Article  CAS  Google Scholar 

  24. Andersson LI, Mosbach K (1990) J Chromatogr A 516:313–322. doi:10.1016/S0021-9673(01)89273-6

    Article  CAS  Google Scholar 

  25. Ramström O, Andersson LI, Mosbach K (1993) J Org Chem 58:7562–7564. doi:10.1021/jo00078a041

    Article  Google Scholar 

  26. Kempe M, Fischer L, Mosbach K (1993) J Mol Recognit 6:25–29. doi:10.1002/jmr.300060103

    Article  CAS  Google Scholar 

  27. Kempe M, Mosbach K (1994) J Chromatogr A 664:276–279. doi:10.1016/0021-9673(94)87016-0

    Article  CAS  Google Scholar 

  28. Haginaka J, Sanbe H (2001) J Chromatogr A 913:141–146. doi:10.1016/S0021-9673(01)00555-6

    Article  CAS  Google Scholar 

  29. Ye L, Ramström O, Mosbach K (1998) Anal Chem 70:2789–2795. doi:10.1021/ac980069d

    Article  CAS  Google Scholar 

  30. Lin JM, Nakagama T, Uchiyama K, Hobo T (1997) J Pharm Biomed Anal 15:1351–1358. doi:10.1016/S0731-7085(96)02013-4

    Article  CAS  Google Scholar 

  31. Schweitz L, Andersson LI, Nilsson S (1997) J Chromatogr A 792:401–409. doi:10.1016/S0021-9673(97)00895-9

    Article  CAS  Google Scholar 

  32. Nilsson J, Spégel P, Nilsson S (2004) J Chromatogr B Analyt Technol Biomed Life Sci 804:3–12. doi:10.1016/j.jchromb.2003.12.036

    Article  CAS  Google Scholar 

  33. Lin JM, Nakagama T, Uchiyama K, Hobo T (1997) J Liquid Chromatogr Relat Technol 20:1489–1506. doi:10.1080/10826079708010989

    Article  CAS  Google Scholar 

  34. Haginaka J, Sanbe H, Takehira H (1999) J Chromatogr A 857:117–125. doi:10.1016/S0021-9673(99)00764-5

    Article  CAS  Google Scholar 

  35. Haginaka J, Takehira H, Hosoya K, Tanaka N (1999) J Chromatogr A 849:331–339. doi:10.1016/S0021-9673(99)00570-1

    Article  CAS  Google Scholar 

  36. Natansohn A, Maxim S, Feldman D (1979) Polymer (Guildf) 20:629–635. doi:10.1016/0032-3861(79)90179-4

    Article  CAS  Google Scholar 

  37. Schweitz L, Andersson LI, Nilsson S (2002) Analyst (Lond) 127:22–28. doi:10.1039/b105104k

    Article  CAS  Google Scholar 

  38. Schweitz L, Andersson LI, Nilsson S (2001) Anal Chim Acta 435:43–47. doi:10.1016/S0003-2670(00)01210-1

    Article  CAS  Google Scholar 

  39. Byrne CD, Smith NW, Dearie HS, Moffatt F, Wren SAC, Evans KP (2001) J Chromatogr A 927:169–177. doi:10.1016/S0021-9673(01)01061-5

    Article  CAS  Google Scholar 

  40. Schwer C, Kenndler E (1991) Anal Chem 63:1801–1807. doi:10.1021/ac00017a026

    Article  CAS  Google Scholar 

  41. Karlsson JG, Andersson LI, Nicholls IA (2001) Anal Chim Acta 435:57–64. doi:10.1016/S0003-2670(00)01182-X

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the Carl Trygger foundation, The Swedish Fund for Research without Animal Experiments, Kungliga Fysiografiska Sällskapet i Lund, the Swedish research Council (VR) (Grant No 40455901 to SN), the Crafoord Foundation and AstraZeneca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Spégel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spégel, P., Schweitz, L., Andersson, L.I. et al. Novel Vinylpyridine Based Cationic MIP Monoliths for Enantiomer Separation in CEC. Chroma 69, 277–285 (2009). https://doi.org/10.1365/s10337-008-0911-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0911-0

Keywords

Navigation