Skip to main content
Log in

Determination of 5-Hydroxytryptamine, Norepinephrine, Dopamine and Their Metabolites in Rat Brain Tissue by LC–ESI–MS–MS

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A liquid chromatography–electrospray ionization tandem mass spectrometry method has been developed to perform the determination of 5-hydroxytryptamine (5-HT), norepinephrine (NE), dopamine (DA) and their metabolites, i.e., 5-hydroxyindole-3-acetic acid (5-HIAA), 4-hydroxy-3-methoxyphenylglycol (MHPG) sulfate, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in rat brain tissue. Analytes were separated on a Thermo C18 column (4.6 mm × 250 mm, 5 μm, SN: 1245575T, Thermo electron corporation, USA) with a mobile phase of 0.05% formic acid/acetonitrile (92:8 for ESI+, 82:18 for ESI, v/v) at the flow-rate of 0.8 mL min−1. The LC system was coupled to a Waters Micromass Quattro Premier XE tandem quadruple mass spectrometer. MS acquisition of 5-HT, NE and DA was performed in positive electrospray ionization multiple reaction monitoring (MRM) mode, while negative electrospray ionization MRM mode was used to monitor their metabolites. The calibration curves were linear within the concentration range of 4–4,450 ng mL−1 for 5-HT, 4–4,110 ng mL−1 for NE and 4–4,100 ng mL−1 for DA (≥ 0.999). The limit of quantitation was 4 ng mL−1. 5-HIAA, MHPG, DOPAC and HVA have good linearity within the range of 12–1,000 ng mL−1(≥ 0.998) and the limit of quantitation was 12 ng mL−1. The intra- and inter-day RSD were lower than 8.45%. The method is sensitive, fast, accurate and usable for quantity determination of monoamine neurotransmitters and their metabolites in neuropsychiatric diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jacob 3rd P, Wilson M, Yu L, Mendelson J, Jones RT (2002) Anal Chem 74:5290–5296. doi:10.1021/ac020101a

    Article  CAS  Google Scholar 

  2. Manini P, Andreoli R, Cavazzini S, Bergamaschi E, Mutti A, Niessen WM (2000) J Chromatogr B Biomed Sci Appl 744:423–431. doi:10.1016/S0378-4347(00)00285-1

    Article  CAS  Google Scholar 

  3. Hows MEP, Lacroix L, Heidbreder C, Organ AJ, Shah AJ (2004) J Neurosci Methods 138:123–132. doi:10.1016/j.jneumeth.2004.03.021

    Article  CAS  Google Scholar 

  4. Jernej B, Banović M, Cicin-Sain L, Hranilović D, Balija M, Oresković D et al (2000) Psychiatry Res 94:153–162. doi:10.1016/S0165-1781(00)00129-3

    Article  CAS  Google Scholar 

  5. Guan Z, Miao L, Zhang W (1997) Zhongguo Ying Yong Sheng Li Xue Za Zhi 13:185–188

    CAS  Google Scholar 

  6. Piletz JE, Halaris A (1989) Clin Chim Acta 185:165–176. doi:10.1016/0009-8981(89)90039-9

    Article  CAS  Google Scholar 

  7. Fauler G, Leis HJ, Huber E, Schellauf C, Kerbl R, Urban C et al (1997) J Mass Spectrom 32:507–514. doi:10.1002/(SICI)1096-9888(199705)32:5<507::AID-JMS503>3.0.CO;2-9

    Article  CAS  Google Scholar 

  8. Lunte SM, O’Shea TJ (1994) Electrophoresis 15:79–86. doi:10.1002/elps.1150150112

    Article  CAS  Google Scholar 

  9. Kele M, Ohmacht R (1996) J Chromatogr A 730:59–62. doi:10.1016/0021-9673(95)01186-2

    Article  CAS  Google Scholar 

  10. Lakshmana MK, Raju TR (1997) Anal Biochem 246:166–170. doi:10.1006/abio.1996.9997

    Article  CAS  Google Scholar 

  11. Mashige F, Ohkubo A, Matsushima Y, Takano M, Tsuchiya E, Kanazawa H et al (1994) J Chromatogr B Biomed Sci Appl 658:63–68. doi:10.1016/0378-4347(94)00227-4

    Article  CAS  Google Scholar 

  12. Wang Y, Fice DS, Yeung PK (1999) J Pharm Biomed Anal 21:519–525. doi:10.1016/S0731-7085(99)00117-X

    Article  CAS  Google Scholar 

  13. Chan EC, Ho PC (2000) Rapid Commun Mass Spectrom 14:1959–1964. doi:10.1002/1097-0231(20001115)14:21<1959::AID-RCM117>3.0.CO;2-T

    Article  CAS  Google Scholar 

  14. Fuh MR, Tai YL, Pan WH (2001) J Chromatogr B Biomed Sci Appl 752:107–114. doi:10.1016/S0378-4347(00)00531-4

    Article  CAS  Google Scholar 

  15. Magera MJ, Stoor AL, Helgeson JK, Matern D, Rinaldo P (2001) Clin Chim Acta 306:35–41. doi:10.1016/S0009-8981(01)00397-7

    Article  CAS  Google Scholar 

  16. Kushnir MM, Urry FM, Frank EL, Roberts WL, Shushan B (2002) Clin Chem 48:323–331

    CAS  Google Scholar 

  17. Törnkvist A, Sjöberg PJR, Markides KE, Bergquist J (2004) J Chromatogr B Analyt Technol Biomed Life Sci 801:323–329. doi:10.1016/j.jchromb.2003.11.036

    Article  Google Scholar 

  18. Li W, Rossi DT, Fountain ST (2000) J Pharm Biomed Anal 24:325–333. doi:10.1016/S0731-7085(00)00422-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huande Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, F., Wang, F., Zhu, R. et al. Determination of 5-Hydroxytryptamine, Norepinephrine, Dopamine and Their Metabolites in Rat Brain Tissue by LC–ESI–MS–MS. Chroma 69, 207–213 (2009). https://doi.org/10.1365/s10337-008-0879-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0879-9

Keywords

Navigation