Skip to main content
Log in

Quantitative TLC Analysis of Steroid Drug Intermediates Formed During Bioconversion of Soysterols

  • Full Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A simple, rapid, and accurate method based on thin-layer chromatography (TLC) combined with image-analysis software has been developed for analysis of steroid drug intermediates formed during bioconversion of soysterols. The results obtained have been compared with those from LC. The method has been used to monitor the accumulation of widely used steroid drug intermediates androst-4-ene-3,17-dione (AD) and androsta-1,4-diene-3,17-dione (ADD), formed during the bioconversion of soysterols by Mycobacterium sp. NRRL B-3805 and Mycobacterium sp. NRRL B-3683. The percentage error between TLC and LC ranged between −0.79 to +4.50 for AD and −0.61 to +2.48 for ADD. Maximum conversion of soysterols to AD and ADD by Mycobacterium sp. NRRL B-3805 was 49.83 and 9.36 mol%, respectively, after incubation for 144 h, whereas conversion of soysterols by Mycobacterium sp. NRRL B-3683 after incubation 288 h was 41.90 mol% for AD and 37.79 mol% for ADD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pontius DJ (1962) Anal Chem 34:168–169. doi:10.1021/ac60181a053

    Article  CAS  Google Scholar 

  2. Ahmad S, Johri BN (1991) Indian J Exp Biol 29:76–77

    Google Scholar 

  3. Roy PK, Khan AW, Basu SK (1991) Indian J Biochem Biophys 28:150–154

    CAS  Google Scholar 

  4. Shukla A, Patil S, Bharti S (1992) Lett Appl Microbiol 15:86–88. doi:10.1111/j.1472-765X.1992.tb00732.x

    Article  CAS  Google Scholar 

  5. Patil S, Srivastava A, Shukla A, Phase N (1991) World J Microbiol Biotechnol 7:626–627. doi:10.1007/BF00452847

    Article  CAS  Google Scholar 

  6. Ahmad S, Johri BN (1992) Appl Microbiol Biotechnol 37:468–469. doi:10.1007/BF00180970

    Article  CAS  Google Scholar 

  7. Lee CY, Liu WH (1992) Appl Microbiol Biotechnol 36:598–603. doi:10.1007/BF00183235

    Article  CAS  Google Scholar 

  8. Lee CY, Chen CD, Liu WH (1993) Appl Microbiol Biotechnol 38:447–452. doi:10.1007/BF00242935

    Article  CAS  Google Scholar 

  9. Vidal M, Becerra K, Mondaca MA, Silva M (2001) Appl Microbiol Biotechnol 57:385–389. doi:10.1007/s002530100693

    Article  CAS  Google Scholar 

  10. Egorova OV, Gulevskaya SV, Puntus IF, Filonov AE, Donova MV (2002) J Chem Technol Biotechnol 77:141–147. doi:10.1002/jctb.536

    Article  CAS  Google Scholar 

  11. Liu WH, Lo CK (1997) J Ind Microbiol Biotechnol 19:269–272. doi:10.1038/sj.jim.2900456

    Article  CAS  Google Scholar 

  12. Cimpoiu C, Hosu A, Hodisan S (2006) J Pharm Biomed Anal 41:633–637. doi:10.1016/j.jpba.2005.12.004

    Article  CAS  Google Scholar 

  13. Johnsson R, Träff G, Sundén M, Ellervik U (2007) J Chromatogr A 1164:298–305. doi:10.1016/j.chroma.2007.07.029

    Article  CAS  Google Scholar 

  14. Poole CF (1999) J Chromatogr A 856:399–427. doi:10.1016/S0021-9673(99)00430-6

    Article  CAS  Google Scholar 

  15. Poole CF (2003) J Chromatogr A 1000:963–984. doi:10.1016/S0021-9673(03)00435-7

    Article  CAS  Google Scholar 

  16. Gerasimov AV (2004) J Anal Chem 59:392–397. doi:10.1023/B:JANC.0000022787.55169.9c

    Article  Google Scholar 

  17. Mustoe SP, McCrossen SD (2001) Chromatographia 53:474–477. doi:10.1007/BF02490381

    Article  Google Scholar 

  18. Borodina EV, Kitaeva TA, Safonova EF, Selemenev EV, Nazarova EA (2007) J Anal Chem 62:1064–1068. doi:10.1134/S106193480711010X

    Article  CAS  Google Scholar 

  19. Wovcha MG, Antosz FJ, Knight JC, Kominek LA, Pyke TR (1978) Biochim Biophys Acta 531:308–321

    CAS  Google Scholar 

  20. Marsheck WJ, Kraychy S, Muir RD (1972) Appl Microbiol 23:72–77

    CAS  Google Scholar 

  21. Arima K, Nagasawa M, Bae M, Tamura G (1969) Agric Biol Chem 33:1636–1643

    CAS  Google Scholar 

  22. Martin CKA (1977) Adv Appl Microbiol 22:29–58. doi:10.1016/S0065-2164(08)70159-X

    Article  CAS  Google Scholar 

  23. Nagasawa M, Bae M, Tamura G, Arima K (1969) Agric Biol Chem 33:1644–1650

    CAS  Google Scholar 

  24. Nagasawa M, Watanbe N, Hashiba H, Tamura G, Arima K (1970) Agric Biol Chem 34:798–800

    CAS  Google Scholar 

  25. Görög S (2004) Anal Sci 20:767–782. doi:10.2116/analsci.20.767

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (VG) thanks the University Grants Commission, New Delhi for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shridhar Patil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulla, V., Banerjee, T. & Patil, S. Quantitative TLC Analysis of Steroid Drug Intermediates Formed During Bioconversion of Soysterols. Chroma 68, 663–667 (2008). https://doi.org/10.1365/s10337-008-0783-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0783-3

Keywords

Navigation