Skip to main content
Log in

Chromatographic Framework to Determine the Memantine Binding Mechanism on Human Serum Albumin Surface

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In this work, the interaction of memantine with human serum albumin (HSA) immobilized on porous silica particles was studied using a biochromatographic approach. The determination of the enthalpy change at different pH values suggested that the protonated group in the memantine–HSA complex exhibits a heat protonation with a magnitude around 65 kJ mol−1. This value agrees with the protonation of a guanidinium group, and confirmed that an arginine group may become protonated in the memantine–HSA complex formation. The thermodynamic data showed that memantine–HSA binding, for low temperature (<293 K), is dominated by a positive entropy change. This result suggests that dehydration at the binding interface and charge–charge interactions contribute to the memantine–HSA complex formation. Above 293 K, the thermodynamic data ΔH and ΔS became negative due to van der Waals interactions and hydrogen bonding which are engaged at the complex interface. The temperature dependence of the free energy of binding is weak because of the enthalpy–entropy compensation caused by a large heat capacity change, ΔC p = − 3.79 kJ mol−1 K−1 at pH = 7. These results were used to determine the potential binding site of this drug on HSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Molinuevo JL, Garcia-Gil V, Villar A (2004) Am J Alzheimer’s Dis Dementias 19:10–18. doi:10.1177/153331750401900103

    Article  Google Scholar 

  2. Reisberg B, Doody R, Stöffler A, Schmitt F, Ferris S, Möbius HJ (2003) N Engl J Med 348:1333–1341. doi:10.1056/NEJMoa013128

    Article  CAS  Google Scholar 

  3. Rogawski MA, Wenk GL (2003) CNS Drug Rev 9:275–308

    CAS  Google Scholar 

  4. Robinson DM, Keating GM (2006) Drugs 66:1515–1534. doi:10.2165/00003495-200666110-00015

    Article  CAS  Google Scholar 

  5. Johnson JW, Kotermanski SE (2006) Curr Opin Pharmacol 6:61–67. doi:10.1016/j.coph.2005.09.007

    Article  CAS  Google Scholar 

  6. Rogawski MA (2000) Amino Acids 19:133–149. doi:10.1007/s007260070042

    Article  CAS  Google Scholar 

  7. Cusack BJ (2004) Am J Geriatr Pharmacother 2:274–302. doi:10.1016/j.amjopharm.2004.12.005

    Article  CAS  Google Scholar 

  8. Molinuevo JL, Lladó A, Rami L (2005) Am J Alzheimer’s Dis Dementias 20:77–85. doi:10.1177/153331750502000206

    Article  Google Scholar 

  9. Micuda S, Mundlova L, Anzenbacherova E, Anzenbacher P, Chladek J, Fuksa L, Martinkova J (2004) Eur J Clin Pharmacol 60:583–589. doi:10.1007/s00228-004-0825-1

    Article  CAS  Google Scholar 

  10. Kornhuber J, Quack G (1995) Neurosci Lett 195:137–139. doi:10.1016/0304-3940(95)11785-U

    Article  CAS  Google Scholar 

  11. Sudlow G, Birkett DJ, Wade DN (1976) Mol Pharmacol 12:1052–1061

    CAS  Google Scholar 

  12. He XM, Carter DC (1992) Nature 358:209–215. doi:10.1038/358209a0

    Article  CAS  Google Scholar 

  13. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Protein Eng 12:439–346. doi:10.1093/protein/12.6.439

    Article  CAS  Google Scholar 

  14. Kragh-Hansen U, Chuang VT, Otagiri M (2002) Biol Pharm Bull 25:695–704. doi:10.1248/bpb.25.695

    Article  CAS  Google Scholar 

  15. W.E. Lindup, in: J.W. Bridges, L.F. Chasseaud, G.G. Gibson (Eds.) (1987) Progress in Drug Metabolism, Vol. 10, Taylor and Francis, New York

  16. Bowers WF, Fulton S, Thompson J (1984) Clin Pharmacokinet 1:49–60

    Google Scholar 

  17. Barre J, Didey F, Delion F, Tillement JP (1988) Ther Drug Monit 10:133–143. doi:10.1097/00007691-198802000-00002

    Article  CAS  Google Scholar 

  18. Hage DS, Austin J (2000) J Chromatogr B 739:39–54. doi:doi:10.1016/S0378-4347(99)00445-4

    Article  CAS  Google Scholar 

  19. Vidal-Madjar C, Jaulmes A, Racine M, Sebille (1998) B J Chromatogr. 458:13–25. doi:10.1016/S0021-9673(00)90550-8

  20. Nakajo NI, Shimamori Y, Yamaguchi S (1980) J Chromatogr 188:347–356. doi:10.1016/S0021-9673(00)81257-1

    Article  Google Scholar 

  21. Andre C, Thomassin M, Guyon C, Truong TT, Guillaume YC (2003) J. Pharm Biomed Anal 32:217–223. doi:10.1016/S0731-7085(03)00077-3

    Article  CAS  Google Scholar 

  22. Loun B, Hage DS (1992) J Chromatogr 579:225–235. doi:10.1016/0378-4347(92)80386-5

    Article  CAS  Google Scholar 

  23. Peyrin E, Guillaume YC (1998) Chromatographia 48:431–435. doi:10.1007/BF02467716

    Article  CAS  Google Scholar 

  24. Guillaume YC, Nicod L, Truong TT, Guinchard C, Robert JF, Thomassin M (2002) J Chromatogr B 768:129–135. doi:10.1016/S0378-4347(01)00491-1

    Article  CAS  Google Scholar 

  25. Hage DS (2002) J Chromatogr B 768:3–30

    Article  CAS  Google Scholar 

  26. Twine SM, Gore MG, Morton P (2003) Arch Biochem Biophys 414:83–90. doi:10.1016/S0003-9861(03)00173-5

    Article  CAS  Google Scholar 

  27. Xie MX, Long M, Liu Y, Qin C, Wang YD (2006) Biochim Biophys Acta 1760:1184–1191

    CAS  Google Scholar 

  28. Andújar-Sánchez M, Clemente-Jiménez JM, Las Heras-Vázquez FJ, Rodríguez-Vico F, Cámara-Artigas A, Jara-Pérez V (2003) Int J Biol Macromol 32:77–82. doi:10.1016/S0141-8130(03)00040-0

    Article  CAS  Google Scholar 

  29. Yamasaki K, Maruyama T, Yoshimoto K, Tsutsumi Y, Narazaki R, Fukuhara A, Kragh-Hansen U, Otagiri M (1999) Biochim Biophys Acta 1432:313–323

    CAS  Google Scholar 

  30. Müller W, Wollert U (1974) Naunyn Schmiedebergs Arch Pharmacol 283:67–82. doi:10.1007/BF00500146

    Article  Google Scholar 

  31. Xie M-X, Long M, Liu Y, Qin C, Wang Y-D (2006) Biochim Biophys Acta (BBA) 1760:1184–1191

    CAS  Google Scholar 

  32. Bagnost T, Guillaume YC, Thomassin M, Robert JF, Berthelot A, Xicluna A, André C (2007) J Chromatogr B Analyt Technol Biomed Life Sci 856:113–120. doi:10.1016/j.jchromb.2007.05.035

    Article  CAS  Google Scholar 

  33. Alberty RA (1969) J Am Chem Soc 91:3899–3904. doi:10.1021/ja01042a037

    Article  CAS  Google Scholar 

  34. Hinz HJ, Shiao DF, Sturtevant JM (1971) Biochemistry 10:1347–1352. doi:10.1021/bi00784a012

    Article  CAS  Google Scholar 

  35. Morillas M, Goble ML, Virden R (1999) J Biochem 338:235–239. doi:10.1042/0264-6021:3380235

    Article  CAS  Google Scholar 

  36. Wieth JO, Bjerrum PJ, Borders CL (1982) Jr. J Gen Physiol 79:283–312 doi:10.1085/jgp.79.2.283

    Google Scholar 

  37. Janssen LH, Nelen TH (1979) JBC (biological chemistry) 254:5300–5303

    CAS  Google Scholar 

  38. Andre C, Truong TT, Robert JF, Thomassin M, Guillaume YC (2005) Anal Chem 77:4201–4206. doi:10.1021/ac050005 k

    Article  CAS  Google Scholar 

  39. Melander W, Campbell DE, Horvath C (1978) J Chromatogr 158:215–225. doi:10.1016/S0021-9673(00)89968-9

    Article  CAS  Google Scholar 

  40. Peyrin E, Guillaume YC, Guinchard C (1997) Anal Chem 69:4979–4984. doi:10.1021/ac9704321

    Article  CAS  Google Scholar 

  41. Gilpin RK, Ehtesham SE, Gregory RB (1991) Anal Chem 63:2825–2828. doi:10.1021/ac00024a004

    Article  CAS  Google Scholar 

  42. Barratt E, Bingham RJ, Warner DJ, Laughton CA, Phillips SE, Homans SW (2005) J Am Chem Soc 127:1827–11834. doi:10.1021/ja0527525

    Article  CAS  Google Scholar 

  43. Urien S, Nguyen P, Berlioz S, Brée F, Vacherot F, Tillement JP (1994) J Biochem 302:69–72

    CAS  Google Scholar 

  44. Peyrin E, Guillaume YC, Guinchard C (1999) Biophys J 77:1206–1212

    CAS  Google Scholar 

  45. Garcia-Fuentes L, Reche P, Lopez-Mayorga O, Santi O, Gonzales- Pacanowska D, Baron C (1995) Eur J Biochem 232:641–645. doi:10.1111/j.1432-1033.1995.641zz.x

    Article  CAS  Google Scholar 

  46. Garcia-Fuentes L, Camara-Artigas A, Lopez-Mayorga O, Baron C (1996) J Biol Mol 27:27569–27574

    Google Scholar 

  47. Tellez-Sanz R, Garcia-Fuentes L, Baron C (1998) FEBS. Lett 423:75–80. doi:10.1016/S0014-5793(98)00069-6

    CAS  Google Scholar 

  48. Baron C, Gonzales JF, Mateo PL, Cortijo M (1989) J. Biol Chem 264:12872–12878

    CAS  Google Scholar 

  49. Baldwin RL (1986) Proc Natl Acad Sci USA 83:8069–8072. doi:10.1073/pnas.83.21.8069

    Article  CAS  Google Scholar 

  50. Ross PD, Subramaniam S (1981) Biochem 20:3096–3102. doi:10.1021/bi00514a017

    Article  CAS  Google Scholar 

  51. Aki H, Goto M, Yamamoto M (1995) Thermochim Acta 251:379–388. doi:10.1016/0040-6031(94) 02053-Q

    Article  CAS  Google Scholar 

  52. Koeberle MJ, Hughes PM, Skellern GG, Wilson CG (2003) Pharm Res 20:1702–1709. doi:10.1023/A:1026116208008

    Article  CAS  Google Scholar 

  53. Murphy KP, Freire E (1992) Adv. Protein Chem 43:313–361

    Article  CAS  Google Scholar 

  54. Spolar RS, Record JR (1994) Science 263:777–784. doi:10.1126/science.8303294

    Article  CAS  Google Scholar 

  55. Connely PR, Thomson JA (1992) Proc Natl Acad Sci USA 11:4781–4785. doi:10.1073/pnas.89.11.4781

    Article  Google Scholar 

  56. Connely PR, Thomson JA, Fitzgibbon MJ, Bruzzese FJ (1993) Biochem 32:5583–5590. doi:10.1021/bi00072a013

    Article  Google Scholar 

  57. Connely PR, Aldape RA, Bruzzese FJ, Chambers SP, Fitzgibbon MJ, Fleming MA, Itoh S, Livingston DJ, Navia MA, Thomson JA (1994) Proc Natl Acad Sci USA 91:1964–1968. doi:10.1073/pnas.91.5.1964

    Article  Google Scholar 

  58. Sturtevant JM (1977) Proc Natl Sci USA 74:2236–2240. doi:10.1073/pnas.74.6.2236

    Article  CAS  Google Scholar 

  59. Suurkuusk J (1974) Acta Chem Scand Ser B 28:409–417

    Article  CAS  Google Scholar 

  60. Hilser VJ, Gomez J, Freire E (1996) Proteins. Struct. Funct. Genet 26:123–133. doi:10.1002/(SICI) 1097-0134(199610) 26:2 ≤ 123::AID-PROT2 ≥ 3.0.CO;2-H

    Article  CAS  Google Scholar 

  61. Hermann T, Patel DJ (2000) Science 287:820–825. doi:10.1126/science.287.5454.820

    Article  CAS  Google Scholar 

  62. Peyrin E, Guillaume YC, Morin N, Guinchard C (1998) J Chromatogr A 808:113–120. doi:10.1016/S0021-9673(98) 00117-4

    Article  CAS  Google Scholar 

  63. Hage DS, Tweed SA (1997) J Chromatogr B 699:499–525. doi:10.1016/S0378-4347(97) 00178-3

    Article  CAS  Google Scholar 

  64. Dalgaard L, Hansen JJ, Pederen JL (1989) J Pharm Biomed Anal 7:361–367. doi:10.1016/0731-7085(89) 80103-7

    Article  CAS  Google Scholar 

  65. Kaliszan R, Noctor TAG, Wainer IW (1992) J Mol Phrmacol 42:512–517

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves-Claude Guillaume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibrahim, F., Guillaume, YC. & André, C. Chromatographic Framework to Determine the Memantine Binding Mechanism on Human Serum Albumin Surface. Chroma 68, 179–186 (2008). https://doi.org/10.1365/s10337-008-0675-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0675-6

Keywords

Navigation