Skip to main content
Log in

An Improved UPLC Method for Rapid Analysis of Levofloxacin in Human Plasma

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A rapid, specific, and sensitive ultra-performance liquid chromatographic method for analysis of levofloxacin in human plasma has been developed and validated. Plasma samples were spiked with the internal standard (enoxacin) and extracted with 10:1 (v/v) ethyl acetate–isopropanol. UPLC was performed on a 100 × 2.1 mm i.d., 1.7 µm particle, C18 column with 88:12 (v/v) 0.4% triethylamine buffer (pH 3)–acetonitrile as mobile phase, pumped isocratically at a pressure of 11,000 psi (758 bar) and a flow-rate of 0.3 mL min−1. Ultraviolet detection was performed at 300 nm. The retention times of levofloxacin and enoxacin were 3.4 and 2.8 min, respectively, and the run-time was 5 min. Calibration showed that response was a linear function of concentration over the range 0.05–10 µg mL−1 (r 2 ≥ 0.99) and the method was validated over this range for both precision and accuracy. The relative standard deviation was <15% for both intra-day and inter-day assay (n = 5). Levofloxacin and enoxacin were stable in plasma; there was no evidence of degradation during three freeze–thaw cycles, post-preparative stability at 20 °C was ≥24 h, short-term stability at room temperature was ≥6 h, and long-term stability at −70 °C was ≥30 days. The method was successfully used in a study of the bioequivalence of two levofloxacin tablet formulations in healthy volunteers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wong FA, Juzwin SJ, Flor SC (1997) J Pharm Biomed Anal 15:765–771. doi:10.1016/S0731-7085(96)01890-0

    Article  CAS  Google Scholar 

  2. Bellmann R, Kuchling G, Dehghanyar P, Zeitlinger M, Minar E, Mayer BX, Muller M, Joukhadar C (2004) Br J Clin Pharmacol 57:563–568. doi:10.1111/j.1365-2125.2004.02059.x

    Article  CAS  Google Scholar 

  3. Pea F, Pavan F, Nascimben E, Benetton C, Scotton PG, Vaglia A, Furlanut M (2003) Antimicrob Agents Chemother 47:3104–3108. doi:10.1128/AAC.47.10.3104-3108.2003

    Article  CAS  Google Scholar 

  4. Rodvold KA, Danziger LH, Gotfried MH (2003) Antimicrob Agents Chemother 47:2450–2457. doi:10.1128/AAC.47.8.2450-2457.2003

    Article  CAS  Google Scholar 

  5. Zhanel GG, Noreddin AM (2001) Curr Opin Pharmacol 1:459–463. doi:10.1016/S1471-4892(01)00080-7

    Article  CAS  Google Scholar 

  6. Djabarouti S, Boselli E, Allaouchiche B, Ba B, Nguyen AT, Gordien JB, Bernadou JM, Saux MC, Breilh D (2004) J Chromatogr B 799:165–172. doi:10.1016/j.jchromb.2003.10.031

    Article  CAS  Google Scholar 

  7. Wren SA, Tchelitcheff P (2006) J Chromatogr A 1119:140–146. doi:10.1016/j.chroma.2006.02.052

    Article  CAS  Google Scholar 

  8. Villiers de A, Lestremau F, Szucs R, Gelebart S, David F, Sandra P (2006) J Chromatogr A 1127:60–69. doi:10.1016/j.chroma.2006.05.071

    Article  Google Scholar 

  9. Petrovic M, Gros M, Barcelo D (2006) J Chromatogr A 1124:68–81. doi:10.1016/j.chroma.2006.05.024

    Article  CAS  Google Scholar 

  10. O’Connor D, Mortishire-Smith R, Morrison D, Davies A, Dominguez M (2006) Rapid Commun Mass Spectrom 20:851–857. doi:10.1002/rcm.2385

    Article  CAS  Google Scholar 

  11. Wren SA (2005) J Pharm Biomed Anal 38:337–343. doi:10.1016/j.jpba.2004.12.028

    Article  CAS  Google Scholar 

  12. Chien SC, Wong FA, Fowler CL, Callery-D’Amico SV, Williams RR, Nayak R, Chow AT (1998) Antimicrob Agents Chemother 42:885–888

    CAS  Google Scholar 

  13. Chien SC, Rogge MC, Gisclon LG, Curtin C, Wong F, Natarajan J, Williams RR, Fowler CL, Cheung WK, Chow AT (1997) Antimicrob Agents Chemother 41:2256–2260

    CAS  Google Scholar 

  14. Carlucci G (1998) J Chromatogr A 812:343–367. doi:10.1016/S0021-9673(98) 00274-X

    Article  CAS  Google Scholar 

  15. KFDA Guidance for industry, Statistical approaches to establishing bioequivalence, Bioequivalence Division, Pharmacology Department, National Institute of Toxicology Department, 2003, website: http://www.kfda.go.kr/

  16. FDA Guidance for industry, Statistical approaches to establishing bioequivalence, US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), 2001, website: http://www.fda.gov/cder/guidance/index.htm

  17. Lubasch A, Keller I, Borner K, Koeppe P, Lode H (2000) Antimicrob Agents Chemother 44:2600–2603. doi:10.1128/AAC.44.10.2600-2603.2000

    Article  CAS  Google Scholar 

  18. Zhou ZL, Yang M, Yu XY, Peng HY, Shan ZX, Chen SZ, Lin QX, Liu XY, Chen TF, Zhou SF, Lin SG (2007) Biomed Chromatogr 21:1045–1051. doi:10.1002/bmc.851

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Kyungpook National University Research Fund 2005 and the Korea Health 21 Research and Development Project, Ministry of Health and Welfare, Republic of South Korea (A050584) and by the Brain Korea 21 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Ran Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, DJ., Phapale, P.B., Jang, IJ. et al. An Improved UPLC Method for Rapid Analysis of Levofloxacin in Human Plasma. Chroma 68, 187–192 (2008). https://doi.org/10.1365/s10337-008-0669-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0669-4

Keywords

Navigation