Skip to main content
Log in

Quantification of the In Vitro and In Vivo Metabolic Fates of 2-, 3- and 4-Bromobenzoic Acids Using High Temperature LC Coupled to ICP-MS and Linear Ion Trap MS

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

High temperature liquid chromatography (HTLC), with water as the mobile phase, combined with ICP-MS tuned to the detection of Br, for quantification, and a linear ion trap MS, for structural identification, were applied to determine the disposition and metabolic fate of 2-, 3- and 4-bromobenzoic acids (BBAs) following in vitro incubation with rat hepatocytes at 4 mM. The separation of the metabolites was performed using a thermal gradient to increase the eluotropic strength of the aqueous mobile phase through the run to elute less polar components. The use of highly aqueous solvents for separations involving ICP-MS is advantageous because the water does not change the conductivity of the plasma thereby providing a more stable system. The improved system stability resulted in better sensitivity, as shown by the increased signal intensity for HTLC compared to conventional reversed-phase separations. Using HTLC to investigate the in vitro metabolic fate of the BBAs showed the major route of metabolism to be glycine conjugation, irrespective of the structure of the parent, but with different amounts produced depending on the positional isomer. The comparison of HTLC with the conventional methodology showed that chromatography at elevated temperatures had no effect on the observed metabolite profile. HTLC was also applied to urine obtained from an in vivo sample and showed an improved chromatographic peak shape compared to conventional liquid chromatography (LC) whilst providing the same analytical result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Duckett C, Wilson ID, Walker H, Abou-Shakra F, Lindon JC, Nicholson JK (2003) Rapid Commun Mass Spectrom 17:1855–1858

    Article  CAS  Google Scholar 

  2. Jensen B, Smith CJ, Bailey C, Rodgers C, Wilson ID, Nicholson JK (2005) Rapid Commun Mass Spectrom 19:519–524

    Article  CAS  Google Scholar 

  3. Duckett C, Bailey C, Walker H, Abou-Shakra F, Wilson ID, Lindon JC, Nicholson JK (2002) Rapid Commun Mass Spectrom 16:245–247

    Article  CAS  Google Scholar 

  4. Nicholson JK, Lindon JC, Scarfe G, Wilson ID (2000) Analyst 125:235–236

    Article  CAS  Google Scholar 

  5. Jensen B, Smith CJ, Wilson ID, Weidolf L (2004) Rapid Commun Mass Spectrom 18:1–3

    Article  CAS  Google Scholar 

  6. Marshall P, Heudi O, McKeown S, Amour A, Abou-Shakra F (2002) Rapid Commun Mass Spectrom 16:220–228

    Article  CAS  Google Scholar 

  7. Smith CJ, Wilson ID, Abou-Shakra F, Payne R, Grisedale H, Long A, Roberts D, Malone M (2002) Chromatographia 55:151–155

    Article  Google Scholar 

  8. Abou-Shakra F, Sage A, Wilson ID, Castro-Perez J, Lindon JC, Nicholson JK, Scarfe G (2002) Chromatographia 55:9–13

    Article  Google Scholar 

  9. Smith CJ, Wilson ID, Abou-Shakra F, Payne R, Parry T, Sinclair P, Roberts D (2003) Anal Chem 75:1463–1469

    Article  CAS  Google Scholar 

  10. Smith CJ, Wilson ID, Weidolf L, Abou-Shakra F, Thomsen M (2004) Chromatographia 59: 165–170

    Google Scholar 

  11. Smith CJ, Jensen B, Wilson ID, Abou-Shakra F, Crowther D (2004) Rapid Commun Mass Spectrom 18:1487–1492

    Article  CAS  Google Scholar 

  12. Wind M, Lehmann W (2004) J Anal At Spectrom 19:20–25

    Article  CAS  Google Scholar 

  13. Evans E, Wolff J, Eckers C (2001) Anal Chem 73:4722–470

    Article  CAS  Google Scholar 

  14. Axelsson B, Jornten-Karlsson M, Michelsen P, Abou-Shakra F (2001) Rapid Commun Mass Spectrom 15:375–385

    Article  CAS  Google Scholar 

  15. Wilson ID (2000) Chromatographia 52:S28–S35

    Article  CAS  Google Scholar 

  16. Smith RM, Burgess R (1997) J Chromatogr A 78s:47–52

    Google Scholar 

  17. Saha S, Smith RM, Lenz E, Wilson ID (2000) J Chromatogr B 991:143–150

    Google Scholar 

  18. Edge AM, Shillingford, Smith CJ, Payne R, Wilson ID (2006) J Chromatogr A 1132:206–210

    Article  CAS  Google Scholar 

  19. Greibrokk T, Andersen T (2003) J Chromatogr A 1000:743–755

    Article  CAS  Google Scholar 

  20. Lestremau F, Villiers A, Lynen F, Cooper A, Szucs R, Sandra P (2007) J Chromatogr A 1138:120–131

    Article  CAS  Google Scholar 

  21. Nyholm L, Sjöberg P, Markides K (1996) J Chromatogr A 755:153–164

    Article  CAS  Google Scholar 

  22. Teutenberg T, Goetze H-J, Tuerk J, Ploeger J, Kiffmeyer T, Schmidt K, Kohorst W, Rohe T, Jansen H, Weber H (2006) J Chromatogr A 1114:89–96

    Article  CAS  Google Scholar 

  23. Seglen P (1976) Methods Cell Biol 13:29

    Article  CAS  Google Scholar 

  24. Reese J, Byard (1981) J In vitro 17:935–940

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, C.J., Shillingford, S., Edge, A.M. et al. Quantification of the In Vitro and In Vivo Metabolic Fates of 2-, 3- and 4-Bromobenzoic Acids Using High Temperature LC Coupled to ICP-MS and Linear Ion Trap MS. Chroma 67, 673–678 (2008). https://doi.org/10.1365/s10337-008-0572-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0572-z

Keywords

Navigation