Skip to main content
Log in

Predicting the Gas Chromatographic Relative Retention Time of Polybrominated Diphenyl Ethers by MEDV-13 Descriptors

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Polybrominated diphenyl ethers (PBDEs) have been used extensively over the past two decades as flame or fire retardants added into many products such as textiles, electronic equipment and insulation material. PBDEs are now ubiquitous environmental pollutants and have been detected in biotic and abiotic matrices that include fish, birds, sediments, air, marine mammals, and human plasma and milk. The purpose of the paper is to develop some models which can predict the gas chromatographic relative retention time of PBDEs on seven stationary phases. The molecular electronegativity distance vector based on 13 atomic types (MEDV-13) were employed to describe the structural changes of PBDEs. Using the variables selection and modeling based on the prediction (VSMP), some four-variable linear equations from 80 PBDEs in the training sets with the correlation coefficient (r 2) >0.98 and the root mean square errors of estimation <0.029 (except for CP-Sil19) were established. The standard regression coefficient indicated that MEDV descriptor x 91 (interaction between the substructure –Br and –Br) was the most important descriptor to affect the RRT values of PBDEs. At the same time, it was found that the number of the ortho-substituent bromines and the number of bromine atoms in PBDE molecule may improve the predictive quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liu Y, Zheng GJ, Yu HX, Martina M, Richardsona BJ, Lama MHW, Lam PKS (2005) Mar Pollut Bull 50(11):1173–1184

    Article  CAS  Google Scholar 

  2. Jaward T, Zhang G, Nam J, Sweetman A, Obbard J, Kobara Y, Jones K (2005) Environ Sci Technol 39(22):8638–8645

    Article  CAS  Google Scholar 

  3. Morland KB, Landrigan PJ, Sjödin A, Gobeille AK, Jones RS, McGahee EE, Needham LL, Patterson DG Jr (2005) Environ Health Perspect 113(12):1689–1692

    Article  CAS  Google Scholar 

  4. Johnson-Restrepo B, Kannan K, Rapaport DP, Roadan BD (2005) Environ Sci Technol 39:5177–5182

    Article  CAS  Google Scholar 

  5. Sjödin A, Patterson DG Jr, Bergman Å (2001) Environ Sci Technol 35:3830–3833

    Article  CAS  Google Scholar 

  6. Mazdai A, Dodder NG, Abernathy MP, Hites RA, Bigsby RM (2003) Environ Health Perspect 111(9):1249–1252

    Article  CAS  Google Scholar 

  7. Stapleton HM, Letcher RJ, Baker JE (2004) Environ Sci Technol 38:1054–1061

    Article  CAS  Google Scholar 

  8. Stapleton HM, Alaee M, Lether RJ, Baker JE (2004) Environ Sci Technol 38:112–119

    Article  CAS  Google Scholar 

  9. Söderström G, Sellström U, de Wit CA, Tysklind M (2004) Environ Sci Technol 38:127–132

    Article  CAS  Google Scholar 

  10. Lindberg P, Sellström U, Häggberg L, de Wit CA (2004) Environ Sci Technol 38:93–96

    Article  CAS  Google Scholar 

  11. Alaee M, Arias P, Sjödin A, Bergman Å (2003) Environ Int 29:683–689

    Article  CAS  Google Scholar 

  12. de Boer J, Cofino WP (2002) Chemosphere 46:625–633

    Article  Google Scholar 

  13. Wang YW, Liu HX, Zhao CY, Liu HX, Cai ZW, Jiang GB (2005) Environ Sci Technol 39:4961–4966

    Article  CAS  Google Scholar 

  14. Wang YW, Li A, Liu HX, Zhang QH, Ma WP, Song WL, Jiang GB (2006) J Chromatogr A 1103:314–328

    Article  CAS  Google Scholar 

  15. Rayne S, Ikonomoub MG (2003) J Chromatogr A 1016:235–248

    Article  CAS  Google Scholar 

  16. Liu SS, Yin CS, Li ZL, Cai SX (2001) J Chem Inf Comput Sci 41:321–329

    Article  CAS  Google Scholar 

  17. Liu SS, Yin CS, Shi YY, Cai SX, Li ZL (2001) Chin J Chem 19:751–756

    Article  CAS  Google Scholar 

  18. Korytár P, Covaci A, de Boer J, Gelbin A, Brinkman UAT (2005) J Chromatogr A 1065:239–249

    Article  CAS  Google Scholar 

  19. Liu SS, Cui SH, Shi YY, Wang LS (2002) Internet Electron J Mol Des 1:610–619

    CAS  Google Scholar 

  20. Liu SS, Liu HL, Yin CS, Wang LS (2003) J Chem Inf Comput Sci 43:964–969

    Article  CAS  Google Scholar 

  21. Liu SS, Liu Y, Yin DQ, Wang LS (2005) Chin Chem Lett 16(11):1559–1562

    CAS  Google Scholar 

  22. Liu SS, Liu Y, Yin DQ, Wang XD, Wang LS (2006) J Sep Sci 29:296–301

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are especially grateful to 973 program (2003CB415002) and the Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (200355) and Shanghai Basic Research Program (No. 06JC14067) and Guangxi Thousands of Talents Program (2003208) for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Shen Liu.

Electronic supplementary material

Below are the links to the electronic supplementary material.

Table 1

. The values for 9 nonzero MEDV-13 descriptors of 209 PBDEs (DOC 350 kb)

Table 2

. The GC RRTs of 209 PBDEs calculated by the QSRR models based on 80 samples (Prd80) and 126 ones (Prd126) (DOC 825 kb)

Abbreviations

Abbreviations

MEDV-13:

Molecular electronegativity distance vector based on 13 atomic types

VMSP:

Variable selection and modeling based on the prediction

LOO:

Leave-one-out

BSR:

The best subset regression

vn :

The number of variables

n :

The number of the samples

r :

The correlation coefficient of estimation

q :

The correlation coefficient of LOO cross-validation

u :

The predicted correlation coefficients

RMSE :

The root mean square error of estimation

RMSV :

The root mean square error of LOO cross-validation

RMSP :

The predicted root mean square error

b :

The standard regression coefficient

O Br :

The ortho-substituent bromine of PBDEs

N Br :

The number of bromine atoms of PBDEs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, YH., Liu, SS. & Liu, HY. Predicting the Gas Chromatographic Relative Retention Time of Polybrominated Diphenyl Ethers by MEDV-13 Descriptors. Chroma 65, 319–324 (2007). https://doi.org/10.1365/s10337-006-0160-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-006-0160-z

Keywords

Navigation