Skip to main content
Log in

A Comparison of SnifProbe and SPME for Aroma Sampling

  • Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The popular solid phase micro extraction (SPME) device and method is compared with SnifProbe (Gordin and Amirav in J Chromatogr A 903:155–172, 2000) in their application for coffee aroma sampling for its analysis. The main difference between SPME and SnifProbe is in the relative motion of the sampled air. While SPME is based on static air sampling and the achievement of equilibrium, SnifProbe is based on active air pumping through the adsorption trap. A second important difference concerns the sample introduction into the GC injector for its intra injector thermal desorption. SPME is based on the use of a special syringe for sample introduction without any change to the injector, while SnifProbe requires a ChromatoProbe for sample introduction. We found that as a result of these differences, while SnifProbe provides a more faithful (representative) headspace and aroma sample collection, SPME is characterized by major compound dependent sample bias. In addition, SnifProbe enabled much faster sample collection than SPME. Since SnifProbe uses the ChromatoProbe for sample introduction into the GC, bigger sample collection/trapping devices such as silicone tubing can be used, and as a result, over ten times superior SnifProbe sensitivity (versus SPME) was demonstrated. Additional SnifProbe and SPME features are compared and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Dewulf J, Van Langenhove H (1997) Atmos Environ 31:3291–3307

    Article  CAS  Google Scholar 

  2. Cropper FR, Kaminsky S (1963) Anal Chem 35:735–743

    Article  CAS  Google Scholar 

  3. Hancock JR, McAnndless JM, Hicken RP (1991) J Chromatogr Sci 29:40–45

    CAS  Google Scholar 

  4. Arthur CL, Pawliszyn J (1990) Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  5. Pawliszyn J (1997) Solid phase micro extraction: theory and practice. Wiley, New York

  6. Pawliszyn J (1999) Applications of solid phase micro extraction. Royal Society of Chemistry, Cambridge

  7. Wardencki W, Michulec M, Curylo J (2004) Int J Food Sci Tech 39:703–717

    Article  CAS  Google Scholar 

  8. Lord H, Pawliszyn J (2000) J Chromatogr A 885:153–193

    Article  CAS  Google Scholar 

  9. Kataoka H, Lord H, Pawliszyn J (2000) J Chromatogr A 880:35–62

    Article  CAS  Google Scholar 

  10. Mondello L, Costa R, Tranchida PQ, Dugo P, Lo Presti M, Festa S, Fazio A, Dugo G (2005) J Sep Sci 28:1101–1109

    Article  CAS  Google Scholar 

  11. Zambonin CG, Balest L, De Benedetto GE, Palmisano F (2005) Talanta 66:261–265

    Article  CAS  Google Scholar 

  12. Freitas AMC, Parreira C, Vilas-Boas L (2001) J Food Comp Anal 14:513–522

    Article  CAS  Google Scholar 

  13. Ortner EK, Rohwer ER (1996) J High Resol Chromatogr 19:339–344

    Article  CAS  Google Scholar 

  14. Hassett AJ, Rohwer ER (1999) J Chromatogr A 849:521–528

    Article  CAS  Google Scholar 

  15. Sandra P, Baltussen E, David F, Hoffmann A (1999) J Microcol Sep 11:737–747

    Article  Google Scholar 

  16. Bicchi C, Iori C, Rubiolo P, Sandra P (2002) J Agr Food Chem 50:449–459

    Article  CAS  Google Scholar 

  17. Bicchi C, Cordero C, Liberto E, Rubiolo P, Sgorbini B, Sandra P (2005) J Chromatogr A 1071:111–118

    Article  CAS  Google Scholar 

  18. Gordin A, Amirav A (2000) J Chromatogr A 903:155–172

    Article  CAS  Google Scholar 

  19. Amirav A, Dagan S (1997) Europ Mass Spectrom 3:105–111

    CAS  Google Scholar 

  20. Jing H, Amirav A (1997) Anal Chem 69:1426–1435

    Article  CAS  Google Scholar 

  21. Wainhaus SB, Tzanani N, Dagan S, Miller ML, Amirav A (1998) J Am Soc Mass Spectrom 9:1311–1320

    Article  CAS  Google Scholar 

  22. Lehotay SJ (2000) J AOAC Int 83:680–697

    CAS  Google Scholar 

  23. Lehotay SJ, Lightfield AR, Herman-Fetcho JA, Donoghue DJ (2001) J Agric Food Chem 49:4589–4595

    Article  CAS  Google Scholar 

  24. Cronin DA (1970) J Chromatogr 52:375–383

    Article  CAS  Google Scholar 

  25. Grob K, Habich A (1985) J Chromatogr 321:45–58

    Article  CAS  Google Scholar 

  26. Burger BV, Munro Z (1986) J Chromatogr 370:449–464

    Article  CAS  Google Scholar 

  27. Goosens EC, De Jong D, De Jong GJ, Brinkman UAT (1998) Chromatographia 47:313–345

    Article  CAS  Google Scholar 

  28. Amirav A (1997) USA patent number 5,686,656

  29. Wang H, Liu W, Guan Y (2004) LC-GC N Am 22:16–24

    CAS  Google Scholar 

  30. Whiton RS, Zoecklein BW (2000) Am J Enol Vitic 51:379–382

    CAS  Google Scholar 

  31. Murray RA (2001) Anal Chem 73:1646–1649

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities. This research was also supported by a Research Grant Award No. US-3500-03 from BARD, the United States–Israel Binational Agricultural Research and Development Fund and by the James Franck Center for Laser Matter Interaction Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Amirav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poliak, M., Kochman, M., Gordin, A. et al. A Comparison of SnifProbe and SPME for Aroma Sampling. Chroma 64, 487–493 (2006). https://doi.org/10.1365/s10337-006-0051-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-006-0051-3

Keywords

Navigation