Skip to main content

Advertisement

Log in

TLC Determination of Aliphatic Polyamines on Calcium Sulfate Layers

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Biogenic polyamines are sensitive markers for various diseases including cancer. Polyamines are difficult to analyze by chromatography due to their high polarity and water-solubility so that derivatization is an essential step for their chromatographic analysis. Earlier studies have shown the efficacy of calcium sulfate (CaSO4) as a TLC coating material for the separation of polar compounds. The aim of this study was to explore the potential of CaSO4 for the analysis of aliphatic polyamines without derivatization. The TLC of six polyamines (ornithine, citrulline, putrescine, cadaverine, spermidine and spermine) was carried out on CaSO4 and silica gel plates using 11 different mobile phases. The results showed that CaSO4 is superior to silica for the separation of underivatized polyamines. The development time of the CaSO4 plates was also about one-third shorter as compared to silica. Methanol was the only solvent to produce differential R F values for the polyamines studied. Ornithine (R F , 0–2) and citrulline (R F , 1–3) were separated from cadaverine (R F , 0.93), spermine (R F , 0.85) and spermidine (R F , 0.85). For quantitative analysis, the polyamines were eluted from the coating material scratched from the plate and the absorbance of the supernatant was measured at 550 nm. The limits of detection (LOD) and quantification (LOQ) were found to be 0.75 and 1.88 μg, respectively. The procedure was applied to the quantitative separation of polyamines in spiked human urine samples (12.5–50 μg). This is probably the first study reporting a TLC method for the separation of underivatized polyamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Russell DH (1985) Drug Metab Rev 16:1–88

    CAS  Google Scholar 

  2. Soulet D, Rivest S (2003) J Cell Biol 162:257–268

    Article  CAS  Google Scholar 

  3. Yatin SM, Yatin M, Varadarajan S, Ain KB, Butterfield DA (2001) J Neurosci Res 63:395–401

    Article  CAS  Google Scholar 

  4. Lee YK, Lee SR, Kin CY (2000) J Neurol Sci 178:124–131

    Article  CAS  Google Scholar 

  5. Henley CM, Muszynski C, Cherian L, Robertson CS (1996) J Neurotrauma 13:487–496

    Article  CAS  Google Scholar 

  6. Baskaya MK, Rao AM, Prasad MR, Dempsey RJ (1996) Neurosurgery 38:140–145

    CAS  Google Scholar 

  7. Shohami E, Nates JL, Glantz L, Trembovler V, Shapira Y, Bachrach U (1992) Exp Neurol 117:189–195

    Article  CAS  Google Scholar 

  8. Paschen W, Hallmayer J, Mies G, Bereczki D (1987) Neurochem Pathol 7:143–156

    CAS  Google Scholar 

  9. Ernestus R, Rohn G, Hossmann K, Paschen W (1993) J Neurochem 60:417–422

    CAS  Google Scholar 

  10. Bachrach U (2004) Amino Acids 26:307–309

    Article  CAS  Google Scholar 

  11. Kubo S, Tamori A, Tanaka H, Takemura S, Shurto T, Hirohashi K, Kinoshita H, Nishiguchi S (2004) Hepatogastroenterology 51:208–210

    CAS  Google Scholar 

  12. Stabellini G, Galastrini C, Gagliano N, Dellavia C, Moscheni C, Vizzotto L, Occhionorelli S, Gioia M (2003) Int J Clin Pharmacol Res 23:17–22

    CAS  Google Scholar 

  13. Khuhawar MY, Memon AA, Jaipal PD, Bhanger MI (1999) J Chromatogr B 723:17–24

    CAS  Google Scholar 

  14. Khalifa A, Eissa S, Aziz A (1999) Clin Biochem 32:635–638

    Article  CAS  Google Scholar 

  15. Khuhawar MY, Qureshi GA (2001) J Chromatogr B 764:385–407

    CAS  Google Scholar 

  16. Nishioka K, Melgarejo AB, Lyon RR, Mitchell MF (1995) J Cell Biochem Suppl 23:87–95

    Article  CAS  Google Scholar 

  17. Loser C, Folsch UR, Paprotny C, Creutzfeldt W (1990) Pancreas 5:119–127

    Article  CAS  Google Scholar 

  18. Szarka G, Pulay T, Csomor S, Tran-Phuong M, Schumann B (1988) Acta Chir Hung 29:365–372

    CAS  Google Scholar 

  19. Shih VE (1978) The metabolic basis of inherited disease. In: Stanbury JB, Wyngaarden JB, Fredrickson DS (eds), McGraw Hill Book Company, New York, p. 373

  20. Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Nat Biotechnol 20:613–618

    Article  CAS  Google Scholar 

  21. Silva CMG, Glória MBA (2002) Food Chem 78:241–248

    Article  CAS  Google Scholar 

  22. Simon-Sarkadi L, Holzapfel WH (1995) Z Lebensm Unters Forsch 200:261–265

    Article  CAS  Google Scholar 

  23. Malle P, Valle M, Bouquelet S (1996) JAOAC Int 79:43–49

    CAS  Google Scholar 

  24. Alberto MR, Arena ME, De Nadra MC (2004) Methods Mol Biol 268:481–487

    CAS  Google Scholar 

  25. Molins-Legua C, Campins-Falco P, Sevillano-Cabeza A, Pedron-Pons M (1999) Analyst 124:477–482

    Article  CAS  Google Scholar 

  26. Lin JK, Lai CC (1982) J Chromatogr 227:369–377

    CAS  Google Scholar 

  27. Choi MH, Kim KR, Chung BC (2000) J Chromatogr 897:295–305

    Article  CAS  Google Scholar 

  28. Sun X, Yang X, Wang E (2003) J Chromatogr A 1005:189–195

    Article  CAS  Google Scholar 

  29. Liu X, Yang LS, Lu YT (2003) J Chromatogr A 998:213–219

    Article  CAS  Google Scholar 

  30. Hosomi M, Smith SM, Murphy GM, Dowling RH (1986) J Chromatogr 375:267–275

    CAS  Google Scholar 

  31. Linares RM, Ayala JH, Afonso AM, González V (1998) Anal Lett 31:475–489

    CAS  Google Scholar 

  32. Price NPJ, Gray DO (1993) J Chromatogr A 635:165–170

    Article  CAS  Google Scholar 

  33. Rustenbeck I, Loptien D, Lenzen S (1995) Degradation of dansyl polyamines on high-performance thin-layer chromatographic plates. J Chromatogr B 667:185–187

    CAS  Google Scholar 

  34. Rathore HS, Khan HA (1988) J Liq Chromatogr 2:3171–3181

    Google Scholar 

  35. Rathore HS, Ali I, Khan HA (1988) J Planar Chromatogr 1:252–254

    CAS  Google Scholar 

  36. Rathore HS, Khan HA (1987) Characterization of barium sulfate as a TLC material for the separation of plant carboxylic acids. Chromatographia 23:432–439

    Article  CAS  Google Scholar 

  37. Smith EL, Hill RL, Lehman IR, Lefkowitz RJ, Handler P, White A (1985) Principles of biochemistry: general aspects. McGraw Hill Book Company, New York, p. 644

    Google Scholar 

  38. Ernestus RI, Rohn G, Hossmann KA, Paschen W (1993) J Neurochem 60:417–422

    CAS  Google Scholar 

  39. Simon Sarkadi L, Holzapfel WH (1994) Z Lebensm Unters Forsch 198:230–233

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by a grant (project no. Bio/2005/02) form the Research Center, College of Science, King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, H.A. TLC Determination of Aliphatic Polyamines on Calcium Sulfate Layers. Chroma 64, 423–427 (2006). https://doi.org/10.1365/s10337-006-0048-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-006-0048-y

Keywords

Navigation