Skip to main content
Log in

Adsorption of Linear Polyethylene and Isotactic Polypropylene from 1,1,2,2-Tetrachloroethane and 1,2,3-Trichloropropane on to Polar Adsorbents

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Linear polyethylene and isotactic polypropylene samples were dissolved in 1,1,2,2-tetrachloroethane or 1,2,3-trichloropropane and injected at 135 °C into columns packed with porous particles of hydroxyapatite, aluminium oxide, zirconium oxide, Florisil, or silica gel. Both polymers were retained, to different extents, within the columns. It is hypothesized that the polymers interact with the surfaces of the adsorbents and are adsorbed. Retention of isotactic polypropylene from 1,1,2,2-tetrachloroethane was in the order aluminium oxide > hydroxyapatite ≈ zirconium oxide ≈ Florisil ≈ silica gel. Recovery of polyethylene from 1,1,2,2-tetrachloroethane was almost the same on aluminium oxide, hydroxyapatite, zirconium oxide, and Florisil; it was more retained by silica gel. Polyethylene was usually more retained than polypropylene. Recovery of polyethylene from both chlorinated solvents was similar whereas recovery of polypropylene was better from 1,2,3-trichloropropane than from 1,1,2,2-tetrachloroethane. Both chlorinated solvents are toxic and may attack seals in a Waters 150C chromatograph. Moreover, the polymers may be chlorinated in these solvents. For these reasons they are not optimum solvents for routine analysis. This is the first time polyethylene and polypropylene have been found to be retained by adsorbents with pore diameters in the range 60–300 Å. Desorption of the retained polymers is possible with some polar solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Warzelhan V, Brandstetter F (2003) Macromol Symp 201:291–300

    Article  CAS  Google Scholar 

  2. Mori S, Barth HG (1999) Size Exclusion Chromatography. Springer, Berlin Heidelberg New York

    Google Scholar 

  3. Lew R, Cheung P, Suwanda D, Balke ST (1988) J Appl Polym Sci 35:1065–1084

    Article  CAS  Google Scholar 

  4. Lederer K, Mingozzi I (1997) Pure Appl Chem 69:993–1006

    CAS  Google Scholar 

  5. Aust N, Parth M, Lederer K (2002) Macromol Symp 181:427–434

    Article  CAS  Google Scholar 

  6. Gabriel C, Lilge D, Laun HM, Rüllmann M, Schulze D, Friedrich Ch (2004) Macromol Rapid Commun 25:249–252

    Article  CAS  Google Scholar 

  7. TaeraLanachi C, Crowther JA, Johnson JF (1979) Org Coat Plast Chem 40:57–62

    Google Scholar 

  8. Crouzet P, Fine F, Mangin P (1969) J Appl Polym Chem 13:205–213

    Article  CAS  Google Scholar 

  9. Crouzet P, Martens A, Magin P (1971) J Chromatogr Sci 9:525–530

    CAS  Google Scholar 

  10. Cooper AR, Bruzzone AR (1973) J Polym Sci Polym Phys Ed 11:1423–1434

    CAS  Google Scholar 

  11. Romanova TA, Eltekov YA (1974) Colloid J USSR 36:823–826 (in Russian)

    Google Scholar 

  12. Peyrouset A, Prechner R, Panaris R, Benoit H (1975) J Appl Polym Sci 19:1363–1371

    Article  CAS  Google Scholar 

  13. Romanova TA, Eltekov YA, Kulakov YA (1975) Colloid J USSR 37:176–178 (in Russian)

    Google Scholar 

  14. Vidal JL, Crouzet P, Martens A (1982) J Chromatogr Sci 20:252–255

    CAS  Google Scholar 

  15. Rudin A, Grinshpun V, O’Driscoll KF (1984) J Liquid Chromatogr 7:1809–1821

    CAS  Google Scholar 

  16. Aust N, Beytollahi-Amtmann I, Lederer K (1995) Int J Polym Anal Charact 1:245–258

    CAS  Google Scholar 

  17. Karbashewski E, Kale L, Rudin A, Tchir WJ, Cook DG, Pronovost JO (1992) J Appl Polym Sci 44:425–434

    Article  CAS  Google Scholar 

  18. Wang WJ, Kolodka E, Zhu S, Hamielec AE, Kostanski LK (1999) Macromol Chem Phys 200:2146–2151

    Article  CAS  Google Scholar 

  19. Faldi A, Soares JBP (2001) Polymer 42:3057–3066

    Article  CAS  Google Scholar 

  20. Willis JN, Dwyer JL, Liu MX (1997) Int J Polym Anal Charact 4:21–29

    CAS  Google Scholar 

  21. DesLauriers PJ, Rohlfing DC, Hsieh ET (2002) Polymer 43:159–170

    Article  CAS  Google Scholar 

  22. Graef SM, Brull R, Pasch H, Wahner UM (2003) e-Polymers no. 005

  23. Glöckner G (1987) Polymer Characterization by Liquid Chromatography. Elsevier, Amsterdam

    Google Scholar 

  24. Pasch H, Trathnigg B (1997) HPLC of Polymers. Springer, Berlin Heidelberg NewYork

    Google Scholar 

  25. Scheirs J, Kaminsky W (eds) (1999) Metallocene-based Polyolefins. Wiley, Weinheim

  26. Chung TCM (2002) Functionalization of Polyolefins. Elsevier, Amsterdam

    Google Scholar 

  27. Mülhaupt R (2003) Macromol Chem Phys 204:289–327

    Article  Google Scholar 

  28. Denayer JF, Bouyermaouen A, Baron GV (1998) Ind Eng Chem Res 37:3691–3698

    Article  CAS  Google Scholar 

  29. Jasra RV, Choudary NV, Bhat SGT, Patel AG, Subrahmanyam N (1997) Sep Sci Technol 32:1571–1587

    CAS  Google Scholar 

  30. Denayer JFM, De Meyer K, Martens JA, Baron GV (2003) Angew Chem Int Ed 42:2774–2777

    Article  CAS  Google Scholar 

  31. Macko T, Pasch H, Denayer JF (2003) J Chromatogr A 1002:55–62

    Article  CAS  Google Scholar 

  32. Macko T, Denayer JF, Pasch H, Baron GV (2003) J Sep Sci 26:1569–1574

    Article  CAS  Google Scholar 

  33. Macko T, Denayer JF, Pasch H, Pan L, Li J (2004) Chromatographia 59:461–467

    CAS  Google Scholar 

  34. Macko T, Pasch H, Denayer JF (2005) J Sep Sci 28:59–64

    Article  CAS  Google Scholar 

  35. Wang X, Rusa CC, Hunt MA, Tonelli AE, Macko T, Pasch H (2005) Macromolecules 38:10341–10345

    Article  CAS  Google Scholar 

  36. Snyder LR (1968) J Chromatogr 36:476–488

    Article  CAS  Google Scholar 

  37. Bogdoll B, Böhme W, Engelhardt H, Halasz I (1979) 298:349–357

  38. Suatoni JC, Garber HR, Davis BE (1975) J Chromatogr Sci 13:367–371

    CAS  Google Scholar 

  39. Suatoni JC, Schwab RE (1980) J Chromatogr Sci 18:375–378

    CAS  Google Scholar 

  40. Felix G, Thoumazeau E, Colin JM, Vion G (1987) J Liq Chromatogr 10:2115–2132

    CAS  Google Scholar 

  41. Lienne M, Gareil P, Rosset R, Husson JF, Emmelin M, Neff B (1987) J Chromatogr 395:255–271

    Article  CAS  Google Scholar 

  42. Smiciklas ID, Milonjic SK, Zec S (2000) J Mater Sci 35:2825–2828

    Article  CAS  Google Scholar 

  43. Dernovaya LI, Eltekov YA (1990) J Chromatogr 520:47–54

    Article  CAS  Google Scholar 

  44. Kawasaki T (1991) J Chromatogr 544:147–184

    Article  CAS  Google Scholar 

  45. Lazic S, Vukovic Z (1994) J Radio Anal Nucl Chem 149:161–168

    Article  Google Scholar 

  46. Nawrocki J, Dunlap C, McCormick A, Carr PW (2004) J Chromatogr A 1028:1–30

    Article  CAS  Google Scholar 

  47. Waksmundzka-Hajnos M (1998) Chem Anal Warsaw 43:301–324

    CAS  Google Scholar 

  48. De Bruyn M, Limbourg M, Denayer JFM, Baron GV, Parvulescu V, Grobet PJ, De Vos DE, Jacobs PA (2003) Appl Catal A General 254:189–201

    Article  Google Scholar 

  49. Lazic S, Katanic-Popovic J, Zec S, Miljevic N (1996) J Cryst Grow 165:124–128

    Article  CAS  Google Scholar 

  50. Drinker P, Cook WA (1949) J Ind Hyg Toxicol 31:51–54

    CAS  Google Scholar 

  51. Irwin RD, Haseman JK, Eustis SL (1995) Fund Appl Toxicol 25:241–252

    Article  CAS  Google Scholar 

  52. van Reenen AJ, Brüll R, Wahner UM, Raubenheimer HG, Sanderson RD, Pasch H (2000) Polym Sci A Polym Chem 38:4110–4118

    Article  Google Scholar 

  53. Sakata Y, Uddin MA, Muto A (1999) J Anal Appl Pyrolysis 51:135–155

    Article  CAS  Google Scholar 

  54. Seddegi ZS, Budrthumal U, Al-Arfaj AA, Al-Amer AM, Barri SAI (2002) Appl Catal A General 225:167–176

    Article  CAS  Google Scholar 

  55. Curthoys B, Davidov VY, Kiselev AV, Kiselev SA, Kuznetsov BV (1974) J Colloid Interface Sci 48:58–62

    Article  CAS  Google Scholar 

  56. Eder F, Stockenhuber M, Lercher JA (1997) J Phys Chem B 101:5414–5419

    Article  CAS  Google Scholar 

  57. Dubinin MM, Isirikyan AA, Nikolaev KM, Polyakov NS, Tatarinova LI (1986) Bull Acad Sci USSR, Div Chem Sci 35:1283–1286 (in Russian)

    Google Scholar 

  58. Nawrocki J (1997) J Chromatogr A 779:29–71

    Article  CAS  Google Scholar 

  59. Zhuravlev LT (1987) Langmuir 3:316–318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank BMBF (Germany) and Basell GmbH (Ludwigshafen, Germany; Project Code 03C035YA) for financial support. Advice on the use of the evaporative light-scattering detector provided by Dr Jade Yakoul (Polymer Laboratories, Church Stretton, UK) are appreciated. T.M. thanks Dr Dusan Berek (Polymer Institute, Bratislava, Slovakia) for the samples of Florisil and aluminium oxide and Dr J.F.M. Denayer (Vrije Universiteit, Brussels, Belgium) for the sample of zeolite MCM-41. The authors would also like to thank Dr David Hunkeler for grammatical correction of this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Macko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macko, T., Pasch, H., Milonjic, S.K. et al. Adsorption of Linear Polyethylene and Isotactic Polypropylene from 1,1,2,2-Tetrachloroethane and 1,2,3-Trichloropropane on to Polar Adsorbents. Chroma 64, 183–190 (2006). https://doi.org/10.1365/s10337-006-0010-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-006-0010-z

Keywords

Navigation