Skip to main content
Log in

Selective variant growth of coherent precipitate under external constraints

  • Published:
Journal of Phase Equilibria

Abstract

An anisotropic distribution of coherent precipitate variants may result in anisotropic behavior of a two-phase material. The distribution of the coherent precipitate variants can be controlled using constrained aging. This article reports our experimental and computational studies of the stress effect on the spatial arrangement of coherent precipitate variants. The research demonstrates that the anisotropic elastic coupling between applied stress/strain and the local strain caused by the lattice mismatch between different phases makes the growth of differently oriented phase variants selective. Ti11Ni14 precipitation in a Ti-51.5at.%Ni alloy was investigated as a particular example. It was demonstrated that the constrained aging strongly affected the distribution of Ti11Ni14 precipitate variants. The resulting selective variant growth of Ti11Ni14 precipitates can be predicted based on the symmetry analysis and the elastic energy calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Cited References

  1. R.E. Smallman,Modern Physical Metallurgy, 4th ed., Butterworth & Co., Ltd, London (1985).

    Google Scholar 

  2. C.T. Sims and W.C. Hagel,The Supemlhys, John Wiley & Sons, (1972).

  3. J.W. Martin,Micromechanisms in Particle-Hardened Alloys (1980).

  4. S.M. Copley,Alloy and Microstructural Design, J.K. Tian and G.S. Ansell, Ed., Academic Press (1976).

  5. D.Y. Li,Scr. Metall. Mater, 34, 195 (1995).

    Google Scholar 

  6. R. Kainuma, M. Matsumoto, and T. Honma,Proc. ICOMAT-86, 717(1987).

  7. R. Portier and D. Gratias,J. Phys. (France), Colloque C4, supplement to No. 12, Tome 43, C4–17(1982).

    MathSciNet  Google Scholar 

  8. J.W. Stewart, R.C. Thomson, and H.K.D.H. Bhadeshia,J. Mater. Sci., 29, 6079–6084 (1994).

    Article  ADS  Google Scholar 

  9. A.G. Khachaturyan,Theory of Structural Transformations in Solids, John Wiley & Sons, New York, (1983).

    Google Scholar 

  10. K. Chandra and G.R. Purdy,J. Appl. Phys., 39, 2176 (1968).

    Article  ADS  Google Scholar 

  11. G. Burns and A.M. Glazer,Space Group for Solid State Scientists, 2nd ed., Academic Press, Boston (1990).

    Google Scholar 

  12. M. Nishida, C.M. Wayman, R. Kainuma, and T. Honma,Scr. Metall. Mater., 20, 899 (1986).

    Google Scholar 

  13. T. Saburi, S. Nenno, and T. Fukuda,Proc. Xlth Int. Conf. on Electron Microscopy, Kyoto, 1631 (1986).

  14. J.D. Eshelby,Proc. Roy. Soc, A241, 376 (1957).

    MathSciNet  ADS  Google Scholar 

  15. J.D. Eshelby,Proc. Roy. Soc, A252, 561 (1959).

    MathSciNet  ADS  Google Scholar 

  16. L.J. Walpole,Proc. Roy. Soc. (A), 300, 270 (1967).

    Article  MATH  ADS  Google Scholar 

  17. N. Kinoshita and T. Mura,Phys. Status Solidi (a), 5, 759 (1971).

    Article  Google Scholar 

  18. R.J. Asaro and D.M. Barnett,J. Mech. Phys. Solids, 23, 11 (1975).

    Google Scholar 

  19. T. Mura, T. Mori, and M. Kato,J. Mech. Phys. Solids, 24, 305 (1976).

    Article  ADS  Google Scholar 

  20. J.K. Lee, D.M. Barnett, and H.I. Aaronson,Metall. Trans., 8A, 963 (1977).

    Google Scholar 

  21. T. Mori, P.C. Cheng, M. Kato, and T. Mura,Acta Metall., 26, 1435 (1978).

    Article  Google Scholar 

  22. A.G. Khachaturyan,Sov. Phys. Solid State, 8, 2163 (1967).

    Google Scholar 

  23. A.G. Khachaturyan and G.A. Shatalov,Sov. Phys. JETP, 29, 557 (1969).

    ADS  Google Scholar 

  24. A.G. Khachaturyan, S. Semenovskaya, and T. Tsakalakos,Phys. Rev. B, Condens. Matter, 52, 1 (1995).

    ADS  Google Scholar 

  25. D.Y. Li and L.Q. Chen,Acta Mater., 45, 2435(1997).

    Article  Google Scholar 

  26. D.A. Porter and K.E. Easterling,Phase Transformations in Metals and Alloys, Van Nostrand Reinhold (1989).

  27. O. Mercier and K.N. Melton,J. Appl. Phys., 51(3), 1833 (1980).

    Article  ADS  Google Scholar 

  28. F.I. Fedorov,Theory of Elastic Waves in Crystals, Plenum Press, NewYork(1968).

    Google Scholar 

  29. T. Mura,Micromechanics of Defects in Solids, Martinus Nijhoff Publishers, The Hague, The Netherlands, 151 (1982).

    Google Scholar 

  30. D.Y. Li and L.Q. Chen,Acta Mater., 45, 471 (1997).

    Article  Google Scholar 

  31. Y. Wang, L.Q. Chen, and A.G. Khachaturyan, “Modeling of Dynamical Evolution of Micro/Mesoscopic Morphological Patterns in Coherent Phase Transformations,”Computer Simulation in Materials Science, Nano/Meso/Macroscopic Space and Time Scales, NATO Advanced Study Institute Series, H.O. Kirchner et al., Ed., Kluwer Academic Publishers, Dordrecht, 325 (1996).

    Google Scholar 

  32. D.Y. Liand L.Q. Chen, Acta Mater., 46, 639, 2573(1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D.Y., Chen, L.Q. Selective variant growth of coherent precipitate under external constraints. JPE 19, 523–528 (1998). https://doi.org/10.1361/105497198770341707

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105497198770341707

Keywords

Navigation