Skip to main content
Log in

Growth modes of grain boundary precipitate in aluminum alloys under different lattice misfits

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The properties of aluminum alloys are profoundly affected by a rich variety of precipitates. Their precipitation behaviors are often very different from each other due to a wide range of lattice misfits between the precipitates and the matrix. This makes the study of mechanisms of the formation of aluminum alloy precipitates very complex and often controversial. Here, the phase-field crystal methodology is used to study grain boundary (GB) precipitation under different lattice misfits. We find that the growth mode of GB precipitation changes from island growth mode to layer growth mode with increasing lattice misfit. At a relatively low lattice misfit, GB segregation and spinodal decomposition first lead to the heterogeneous distribution of solute and then nucleation events at solute-enriched sites, which is conducive to the island growth of the nuclei. In contrast, at a sufficiently high lattice misfit, a layer with a high solute concentration is formed soon along the entire GB due to a great amount of solute segregation, which gives rise to the rapid merging of densely distributed nuclei, and then layer growth occurs. Quantitative analysis reveals that the increase in lattice misfit decreases the nucleation barrier and the critical concentration required by the onset of structural transformation. Our study contributes to a systematic understanding of the formation of diversified precipitates in aluminum alloys in terms of lattice misfit.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Date availability

The simulation data from this study are available from the corresponding author upon reasonable request.

Code availability

All code used to calculate the current results is available from the corresponding author upon reasonable request.

References

  1. Small KA, Clayburn Z, DeMott R, Primig S, Fullwood D, Taheri, ML (2020) Interplay of dislocation substructure and elastic strain evolution in additively manufactured Inconel 625 - Sciencedirect. Mater Sci Eng: A 785:139380

    Article  CAS  Google Scholar 

  2. Xiao L, Chen X, Wei K, Liu Y, Yin D, Hu Z, Zhou H, Zhu Y (2021) Effect of dislocation configuration on Ag segregation in subgrain boundary of a Mg-Ag alloy. Scripta Mater 191:219–224

    Article  CAS  Google Scholar 

  3. Lee SW, Kim JH, Park CH, Hong J-K, Yeom J-T (2021) Alloy design of metastable α+β titanium alloy with high elastic admissible strain. Mater Sci Eng: A 802:140621. https://doi.org/10.1016/j.msea.2020.140621

    Article  CAS  Google Scholar 

  4. Tonks M, Millett P, Cai W, Wolf D (2010) Analysis of the elastic strain energy driving force for grain boundary migration using phase field simulation. Scripta Mater 63(11):1049–1052. https://doi.org/10.1016/j.scriptamat.2010.07.034

    Article  CAS  Google Scholar 

  5. Alves CLM, Rezende J, Senk D, Kundin J (2020) Phase-field simulation of peritectic steels solidification with transformation-induced elastic effect. J Market Res 9(3):3805–3816. https://doi.org/10.1016/j.jmrt.2020.02.007

    Article  CAS  Google Scholar 

  6. El-Ghazzawy EH (2020) Effect of heat treatment on structural, magnetic, elastic and optical properties of the co-precipitated Co0.4Sr0.6Fe2O4. J Magn Magn Mater 497:166017. https://doi.org/10.1016/j.jmmm.2019.166017

    Article  CAS  Google Scholar 

  7. Javanbakht M, Adaei M (2019) Investigating the effect of elastic anisotropy on martensitic phase transformations at the nanoscale. Comput Mater Sci 167:168–182. https://doi.org/10.1016/j.commatsci.2019.05.047

    Article  CAS  Google Scholar 

  8. Motazedian F, Zhang J, Wu Z, Jiang D, Sarkar S, Martyniuk M, Yan C, Liu Y, Yang H (2021) Achieving ultra-large elastic strains in Nb thin films on NiTi phase-transforming substrate by the principle of lattice strain matching. Mater Des 197:109257. https://doi.org/10.1016/j.matdes.2020.109257

    Article  CAS  Google Scholar 

  9. Sun J, Hensel J, Klassen J, Nitschke-Pagel T, Dilger K (2019) Solid-state phase transformation and strain hardening on the residual stresses in S355 steel weldments. J Mater Process Technol 265:173–184. https://doi.org/10.1016/j.jmatprotec.2018.10.018

    Article  CAS  Google Scholar 

  10. Zhang F, Zhang G, Yang L, Zhou Y, Du Y (2019) Thermodynamic modeling of YO1.5-TaO2.5 system and the effects of elastic strain energy and diffusion on phase transformation of YTaO4. J Eur Ceram Soc 39(15):5036–5047. https://doi.org/10.1016/j.jeurceramsoc.2019.07.008

    Article  CAS  Google Scholar 

  11. Wang Q, Li Z, Pang S, Li X, Dong C, Liaw PK (2018) Coherent precipitation and strengthening in compositionally complex alloys: a review. Entropy (Basel) 20(11):878. https://doi.org/10.3390/e20110878

    Article  CAS  Google Scholar 

  12. Zhou CLWL, Xie P, Niu FJ, Ming WQ, Du K, Chen JH (2021) A hidden precipitation scenario of the θ′-phase in Al-Cu alloys. J Mater Sci Technol 75:126–138. https://doi.org/10.1016/j.jmst.2020.09.039

    Article  Google Scholar 

  13. Chrominski W, Lewandowska M (2020) Influence of dislocation structures on precipitation phenomena in rolled Al–Mg–Si alloy. Mater Sci Eng, A 793:139903. https://doi.org/10.1016/j.msea.2020.139903

    Article  CAS  Google Scholar 

  14. Brauer G (1939) U¨ ber die kristallstruktur von TiAl3, NbAl3, TaAl3, und ZrAl3, Z. Anorg Allg Chem 242:1–22

    Article  CAS  Google Scholar 

  15. Norby ANCP (1986) Preparation and structure of Al3Ti. Acta Chem Scand Ser A 40:157–159

    Article  Google Scholar 

  16. Srinivasan PBDS, Schwarz RB (1991) Metastable phases in the Al3X (X = Ti, Zr, and Hf) intermetallic system. Scr Metall Mater 25(11):2513–2516

    Article  CAS  Google Scholar 

  17. Lee SB, Jung J, Yoo SJ, Kim Y, Han HN (2019) Effects of coherency strain on structure and migration of a coherent grain boundary in Cu. Mater Charact 151:436–444. https://doi.org/10.1016/j.matchar.2019.02.042

    Article  CAS  Google Scholar 

  18. Gelczuk Ł, Serafińczuk J, Dąbrowska-Szata M, Dłużewski P (2008) Anisotropic misfit strain relaxation in lattice mismatched InGaAs/GaAs heterostructures grown by MOVPE. J Cryst Growth 310(12):3014–3018. https://doi.org/10.1016/j.jcrysgro.2008.03.003

    Article  CAS  Google Scholar 

  19. Ahn SY, Kim SW, Kang S (2010) Microstructure of Ti(CN)–WC–NbC–Ni Cermets. J Am Ceram Soc 84(4):843–849

    Article  Google Scholar 

  20. Kim S, Zuo J-M, Kang S (2010) Effect of WC or NbC addition on lattice parameter of surrounding structure in Ti(C0.7N0.3)–Ni cermets investigated by TEM/CBED. J Eur Ceram Soc 30(10):2131–2138. https://doi.org/10.1016/j.jeurceramsoc.2010.03.006

    Article  CAS  Google Scholar 

  21. Wen H, Zhao B, Dong X, Sun F, Zhang L (2020) Preferential growth of coherent precipitates at grain boundary. Mater Lett 261:126984. https://doi.org/10.1016/j.matlet.2019.126984

    Article  CAS  Google Scholar 

  22. Ferreirós PA, Alonso PR, Rubiolo GH (2019) Effect of Ti additions on phase transitions, lattice misfit, coarsening, and hardening mechanisms in a Fe2AlV-strengthened ferritic alloy. J Alloys Compd 806:683–697. https://doi.org/10.1016/j.jallcom.2019.07.288

    Article  CAS  Google Scholar 

  23. Neumeier S, Pyczak F, Göken M (2021) The temperature dependent lattice misfit of rhenium and ruthenium containing nickel-base superalloys – experiment and modelling. Mater Des 198:109362. https://doi.org/10.1016/j.matdes.2020.109362

    Article  CAS  Google Scholar 

  24. Liu X, Chen Z, Chen Y, Yang S, Pan Y, Lu Y, Qu S, Li Y, Yang Y, Wang C (2021) Multicomponent Co-Ti-based superalloy with high solvus temperature and low lattice misfit. Mater Lett 284:128910. https://doi.org/10.1016/j.matlet.2020.128910

    Article  CAS  Google Scholar 

  25. He F, Zhang K, Yeli G, Tong Y, Wei D, Li J, Wang Z, Wang J, Kai JJ (2020) Anomalous effect of lattice misfit on the coarsening behavior of multicomponent L12 phase. Social Ence Electron Publ 183:111–116

    CAS  Google Scholar 

  26. Ramanarayan H, Abinandanan TA (2003) Phase field study of grain boundary effects on spinodal decomposition. Acta Mater 51(16):4761–4772. https://doi.org/10.1016/s1359-6454(03)00301-x

    Article  CAS  Google Scholar 

  27. Li L, Li Z, Kwiatkowski Da Silva A, Peng Z, Zhao H, Gault B, Raabe D (2019) Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy. Acta Mater 178:1–9. https://doi.org/10.1016/j.actamat.2019.07.052

    Article  CAS  Google Scholar 

  28. Ramanarayan H, Abinandanan TA (2004) Grain boundary effects on spinodal decomposition. Acta Mater 52(4):921–930. https://doi.org/10.1016/j.actamat.2003.10.028

    Article  CAS  Google Scholar 

  29. Guo C, Shi Y, Chen J, Xiao X, Liu B, Liu J, Yang B (2020) Effects of P addition on spinodal decomposition and discontinuous precipitation in Cu-15Ni-8Sn alloy. Mater Charact 171:110760. https://doi.org/10.1016/j.matchar.2020.110760

    Article  CAS  Google Scholar 

  30. Maji R, Luppi E, Capron N, Degoli E (2021) Ab initio study of oxygen segregation in silicon grain boundaries: the role of strain and vacancies. Acta Mater 204:116477. https://doi.org/10.1016/j.actamat.2020.11.019

    Article  CAS  Google Scholar 

  31. Soenen B, De AK, Vandeputte S, De Cooman BC (2004) Competition between grain boundary segregation and Cottrell atmosphere formation during static strain aging in ultra low carbon bake hardening steels. Acta Mater 52(12):3483–3492. https://doi.org/10.1016/j.actamat.2004.03.046

    Article  CAS  Google Scholar 

  32. Sun Z, Tan X, Wang C, Descoins M, Mangelinck D, Tor SB, Jägle EA, Zaefferer S, Raabe D (2020) Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy. Acta Mater. 204:116505. https://doi.org/10.1016/j.actamat.2020.116505

    Article  CAS  Google Scholar 

  33. Wu YX, Li XY, Wang YM (2007) First-principles study of the influence of lattice misfit on the segregation behaviors of hydrogen and boron in the Ni–Ni3Al system. Acta Mater 55(14):4845–4852. https://doi.org/10.1016/j.actamat.2007.05.006

    Article  CAS  Google Scholar 

  34. Luo L, Ma Y, Li S, Pei Y, Qin L, Gong S (2018) Evolutions of microstructure and lattice misfit in a γ′-rich Ni-based superalloy during ultra-high temperature thermal cycle. Intermetallics 99:18–26. https://doi.org/10.1016/j.intermet.2018.05.011

    Article  CAS  Google Scholar 

  35. Wang H, Gao X, Chen S, Li Y, Wu Z, Ren H (2020) Effects of Al on the precipitation of B2 Cu-rich particles in Fe–Cu ferritic alloy: experimental and theoretical study. J Alloys Compd 846:156386. https://doi.org/10.1016/j.jallcom.2020.156386

    Article  CAS  Google Scholar 

  36. Alrababah YM, Sheng CK, Hassan MF (2019) Influence of ammonium nitrate concentration on structural evolution and optical properties tuning of CdS nanoparticles synthesized by precipitation method. Nano-Struct Nano-Obj 19:100344. https://doi.org/10.1016/j.nanoso.2019.100344

    Article  CAS  Google Scholar 

  37. Mao H, Kong Y, Cai D, Yang M, Peng Y, Zeng Y, Zhang G, Shuai X, Huang Q, Li K, Zapolsky H, Du Y (2020) β’’ needle-shape precipitate formation in Al-Mg-Si alloy: phase field simulation and experimental verification. Comput Mater Sci 184:109878. https://doi.org/10.1016/j.commatsci.2020.109878

    Article  CAS  Google Scholar 

  38. Riet AA, Van Orman JA, Lacks DJ (2021) A molecular dynamics study of grain boundary diffusion in MgO. Geochim Cosmochim Acta 292:203–216. https://doi.org/10.1016/j.gca.2020.09.012

    Article  CAS  Google Scholar 

  39. Deymier P, Taiwo A, Kalonji G (1987) A grain boundary phase transition studied by molecular dynamics. Acta Metall 35(11):2719–2730. https://doi.org/10.1016/0001-6160(87)90271-9

    Article  Google Scholar 

  40. Guziewski M, Banadaki AD, Patala S, Coleman SP (2020) Application of Monte Carlo techniques to grain boundary structure optimization in silicon and silicon-carbide. Comput Mater Sci 182:109771. https://doi.org/10.1016/j.commatsci.2020.109771

    Article  CAS  Google Scholar 

  41. Mohammadi H, Eivani AR, Seyedein SH, Ghosh M (2020) Modified Monte Carlo approach for simulation of grain growth and Ostwald ripening in two-phase Zn–22Al alloy. J Market Res 9(5):9620–9631. https://doi.org/10.1016/j.jmrt.2020.06.017

    Article  CAS  Google Scholar 

  42. Elder KR, Katakowski M, Haataja M, Grant M (2002) Modeling elasticity in crystal growth. Phys Rev Lett. https://doi.org/10.1103/physrevlett.88.245701

    Article  Google Scholar 

  43. Elder KR, Grant M (2004) Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys Rev E. https://doi.org/10.1103/physreve.70.051605

    Article  Google Scholar 

  44. Elder KR, Provatas N, Berry J, Stefanovic P, Grant M (2007) Phase-field crystal modeling and classical density functional theory of freezing. Phys Rev B. https://doi.org/10.1103/physrevb.75.064107

    Article  Google Scholar 

  45. Greenwood M, Rottler J, Provatas N (2011) Phase-field-crystal methodology for modeling of structural transformations. Phys Rev E. https://doi.org/10.1103/physreve.83.031601

    Article  Google Scholar 

  46. Tang S, Wang JC, Svendsen B, Raabe D (2017) Competitive bcc and fcc crystal nucleation from non-equilibrium liquids studied by phase-field crystal simulation. Acta Mater 139:196–204. https://doi.org/10.1016/j.actamat.2017.08.015

    Article  CAS  Google Scholar 

  47. Gránásy L, Tóth GI, Warren JA, Podmaniczky F, Tegze G, Rátkai L, Pusztai T (2019) Phase-field modeling of crystal nucleation in undercooled liquids – a review. Prog. Mater Sci. 106:100569. https://doi.org/10.1016/j.pmatsci.2019.05.002

    Article  CAS  Google Scholar 

  48. Backofen R, Barmak K, Elder KE, Voigt A (2014) Capturing the complex physics behind universal grain size distributions in thin metallic films. Acta Mater 64:72–77. https://doi.org/10.1016/j.actamat.2013.11.034

    Article  CAS  Google Scholar 

  49. Wu K-A, Voorhees PW (2012) Phase field crystal simulations of nanocrystalline grain growth in two dimensions. Acta Mater 60(1):407–419. https://doi.org/10.1016/j.actamat.2011.09.035

    Article  CAS  Google Scholar 

  50. Tang S, Wang Z, Guo Y, Wang J, Yu Y, Zhou Y (2012) Orientation selection process during the early stage of cubic dendrite growth: a phase-field crystal study. Acta Mater 60(15):5501–5507. https://doi.org/10.1016/j.actamat.2012.07.012

    Article  CAS  Google Scholar 

  51. Tang S, Wang J, Li J, Wang Z, Guo Y, Guo C, Zhou Y (2017) Phase-field-crystal investigation of the morphology of a steady-state dendrite tip on the atomic scale. Phys Rev E. https://doi.org/10.1103/physreve.95.062803

    Article  Google Scholar 

  52. Shuai X, Wang ZJ, Mao H, Tang S, Kong Y, Du Y (2021) Atomic-scale study of compositional and structural evolution of early-stage grain boundary precipitation in Al–Cu alloys through phase-field crystal simulation. J Mater Sci 56(22):12700–12715. https://doi.org/10.1007/s10853-021-06064-0

    Article  CAS  Google Scholar 

  53. Fallah V, Korinek A, Ofori-Opoku N, Provatas N, Esmaeili S (2013) Atomistic investigation of clustering phenomenon in the Al–Cu system: three-dimensional phase-field crystal simulation and HRTEM/HRSTEM characterization. Acta Mater 61(17):6372–6386. https://doi.org/10.1016/j.actamat.2013.07.015

    Article  CAS  Google Scholar 

  54. Fallah V, Ofori-Opoku N, Stolle J, Provatas N, Esmaeili S (2013) Simulation of early-stage clustering in ternary metal alloys using the phase-field crystal method. Acta Mater 61(10):3653–3666. https://doi.org/10.1016/j.actamat.2013.02.053

    Article  CAS  Google Scholar 

  55. Yamanaka A, McReynolds K, Voorhees PW (2017) Phase field crystal simulation of grain boundary motion, grain rotation and dislocation reactions in a BCC bicrystal. Acta Mater 133:160–171. https://doi.org/10.1016/j.actamat.2017.05.022

    Article  CAS  Google Scholar 

  56. Joel Berry NP, Rottler J, Sinclair CW (2012) Defect stability in phase-field crystal models: stacking faults and partial dislocations. Phys Rev B 86:241142. https://doi.org/10.1103/PhysRevB.86.224112

    Article  CAS  Google Scholar 

  57. Joel Berry NP, Rottler J, Sinclair CW (2014) Phase field crystal modeling as a unified atomistic approach to defect dynamics. Phys Rev B 89:214117. https://doi.org/10.1103/PhysRevB.89.214117

    Article  CAS  Google Scholar 

  58. Greenwood M, Rottler J, Provatas N (2011) Phase-field-crystal methodology for modeling of structural transformations. Phys Rev E Stat Nonlinear Soft Matter Phys 83(1):031601

    Article  Google Scholar 

  59. Chen LQ, Jie S (1998) Applications of semi-implicit Fourier-spectral method to phase field equations. Comput Phys Commun 108(2–3):147–158

    Article  CAS  Google Scholar 

  60. Saha S, Todorova TZ, Zwanziger JW (2015) Temperature dependent lattice misfit and coherency of Al3X (X = Sc, Zr, Ti and Nb) particles in an Al matrix. Acta Mater 89:109–115. https://doi.org/10.1016/j.actamat.2015.02.004

    Article  CAS  Google Scholar 

  61. Liu C, Garner A, Zhao H, Prangnell PB, Gault B, Raabe D, Shanthraj P (2021) CALPHAD-informed phase-field modeling of grain boundary microchemistry and precipitation in Al-Zn-Mg-Cu alloys. Acta Mater 214:116966. https://doi.org/10.1016/j.actamat.2021.116966

    Article  CAS  Google Scholar 

  62. Raabe SSBD, Millan J, Ponge D, Assadi H, Herbig M, Choi P-P (2013) Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite. Acta Mater 61:6132–6152. https://doi.org/10.1016/j.actamat.2013.06.055

    Article  CAS  Google Scholar 

  63. Sun S, Zhao E, Hu C, An Y, Chen W (2021) Precipitation behavior of silicide and synergetic strengthening mechanisms in TiB-reinforced high-temperature titanium matrix composites during multi-directional forging. J Alloys Compd 867:159051. https://doi.org/10.1016/j.jallcom.2021.159051

    Article  CAS  Google Scholar 

  64. Xiao-juan Wang L, Huang T-W, Yang W-C, Yue Q-Z, He C, Zhang J, ZhiFu H (2020) Grain boundary precipitation behavior in Re-containing nickel-based directionally solidified superalloys with carbon and boron additions. Vacuum 179:109483. https://doi.org/10.1016/j.vacuum.2020.109483

    Article  CAS  Google Scholar 

  65. Kuzmina M, Herbig M, Ponge D, Sandlobes S, Raabe D (2015) Linear complexions: confined chemical and structural states at dislocations. Science 349(6252):1080–1083. https://doi.org/10.1126/science.aab2633

    Article  CAS  Google Scholar 

  66. Guo Y, Wang J, Wang Z, Li J, Tang S, Liu F, Zhou Y (2015) Strain mapping in nanocrystalline grains simulated by phase field crystal model. Philos Mag 95(9):973–984. https://doi.org/10.1080/14786435.2015.1011250

    Article  CAS  Google Scholar 

  67. Galindo PL, Kret S, Sanchez AM, Laval J-Y, Yáñez A, Pizarro J, Guerrero E, Ben T, Molina SI (2007) The peak pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 107(12):1186–1193. https://doi.org/10.1016/j.ultramic.2007.01.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 51820105001, Grant No. 51801237) and the National Key Laboratory of Science and Technology on High-strength Structural Materials in Central South University (No. 6142912200106). We are grateful for technical support from the High Performance Computing Center of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Tang or Y. Du.

Ethics declarations

Conflict of interest

The authors declare no competing financial or nonfinancial interests.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuai, X., Mao, H., Tang, S. et al. Growth modes of grain boundary precipitate in aluminum alloys under different lattice misfits. J Mater Sci 57, 2744–2757 (2022). https://doi.org/10.1007/s10853-021-06852-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06852-8

Navigation