Skip to main content
Log in

Thermodynamic study of phase equilibria in the Pb-Bi-Hg system

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

Thermodynamic modeling of the Pb-Bi-Hg ternary system was done with the help of the calculation phase diagram (CALPHAD) method. This work included a thermodynamic characterization of the three binary borders: the parameters relating to the Pb-Bi system were taken from the literature, whereas those of Pb-Hg and Bi-Hg systems were determined during this study, and were primarily based on particular calorimetric measurements. Some differential scanning calorimetry (DSC) data for the ternary system allowed us to verify the existence of a ternary compound with a composition close to Pb0.45Bi0.35Hg0.2 and the presence of two peritectic invariants. With these results, it was possible to carry out the assessment of the ternary interaction parameter of the liquid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.U. Knebel, X. Cheng, C.H. Lefhalm, G. Muller, G. Schumacher, J. Konys, and H. Glasbrenner: “Design and Corrosion Study of a Closed Spallation Target Module of an Accelerator-Driven System (ADS),” Nucl. Eng. Des., 2000, 202, pp. 279–96.

    Article  Google Scholar 

  2. D. Gorse: Conference on Compatibility of Structural Materials with Lead Alloys, GEDEON Research Group, Paris La Défense, 2000.

    Google Scholar 

  3. W. Vrieze: “Low Pressure Mercury Vapour Discharge Lamp,” European Patent Application 0157440 A1, 1985.

  4. Y. Takashi and K. Seiko: “Amalgam Suitable for Use in a Low Mercury Vapor Discharge Lamp,” European Patent Application 0327346 A2, 1989.

  5. M.H.R. Lankhorst, W. Keur, and H.A.M. Van Hal: “Amalgams for Fluorescent Lamps. Part II: The Systems Bi-Pb-Hg and Bi-Pb-Au-Hg,” J. Alloys Compd., 2000, 309, pp. 188–96.

    Article  Google Scholar 

  6. N. Saunders and A.P. Niodownik: “CALPHAD (Calculation of Phase Diagram): A Comprehensive Guide” in Materials Series, 1, R.M. Cahn, ed., Pergamon, Oxford, UK, 1998.

    Google Scholar 

  7. S.W. Yoon and H.M. Lee: “A Thermodynamic Study of Phase Equilibria in the Sn-Bi-Pb Solder System,” CALPHAD, 1998, 22, pp. 167–78.

    Article  Google Scholar 

  8. N.A. Gokcen: “The Bi-Pb (Bismuth-Lead) System,” J. Phase Equilib., 1992, 13, pp. 21–32.

    Article  Google Scholar 

  9. A.T. Dinsdale: “SGTE Data for Pure Elements,” CALPHAD, 1991, 15, pp. 317–425.

    Article  Google Scholar 

  10. T. Takase: Nippon Kinzoku Gakkaishi, 1937, 1, p. 43 (in Japanese).

    Google Scholar 

  11. M.V. Nosek, S.H. Yang, and N.M. Semibratova: “Phase Diagram of Lead-Bismuth System,” Tr. Inst. Khim. Nauk, Akad. Nauk Kaz. SSR, 1967, 15, pp. 150–57 (in Russian).

    Google Scholar 

  12. B. Predel and W. Schwermann: “Analysis of the Thermodynamic Properties of Solid Lead-Bismuth Alloys,” Z. Metallkd., 1967, 58, pp. 553–57 (in German).

    Google Scholar 

  13. Z. Wojtaszek: “Intermediate Phase in the Bismuth-Lead System,” Ser. Nauk Mat. Przyrod., Mat., Fiz., Chem., 1956, 2, pp. 151–61.

    Google Scholar 

  14. M. Hayasi: Nippon Kinzoku Gakkaishi, 1939, 3, p. 123.

    Google Scholar 

  15. M. Azzaoui and J. Hertz: “Darken and Redlich-Kister Modeling of Liquid Metallic Phases. The Pb-Sn-Bi Mixing Enthalpy,” Z. Metallkd., 1995, 86, pp. 776–83.

    Google Scholar 

  16. W.A. Badawi: “Behavior of the Enthalpy of Mixing in the Ternary Systems Lead-Antimony-Tin, Bismuth-Lead-Tin, and Bismuth-Cadmium-Tin at 950 K. I. Experimental Investigation,” Bull. Chem. Soc. Jpn., 1988, 61, pp. 1351–55.

    Article  Google Scholar 

  17. W.A. Badawi, M. El-Talbi, and A.M. Qun: “The Behavior of Mixing in Liquid Binary Alloys. Enthalpies of Mixing in the Systems Lead-Tin, Lead-Antimony, Lead-Bismuth, and Lead-Thallium,” Bull. Chem. Soc. Jpn., 1990, 63, pp. 1795–800.

    Article  Google Scholar 

  18. Z. Moser: “Thermodynamic Properties of Liquid Lead-Bismuth Solutions,” Z. Metallkd., 1973, 64, pp. 40–46.

    Google Scholar 

  19. U. Gonser: J. Phys. Chem., 1954, 181, p. 1.

    Google Scholar 

  20. K. Niwa, M. Shimojii, and O. Mikumi: Nippon Kinzoku Gakkaishi, 1960, 24, p. 668 (in Japanese).

    Google Scholar 

  21. R.J. Fruehan: “Mass Spectrometric Determination of Activities for Alloys with Complex Vapor Species: Bismuth-Palladium and Bismuth-Thallium,” Met. Trans., 1971, 2, pp. 1213–18.

    Article  Google Scholar 

  22. P. Moldovan: “Experimental Determination of the Thermodynamic Properties of Molten Lead-Bismuth Alloys,” Bull. Inst. Politeh, Ser. Chim. Metal., 1977, 39, pp. 107–12.

    Google Scholar 

  23. P. Roy, R.L. Orr, and R. Hultgren: J. Phys. Chem., 1960, 64, p. 1034.

    Article  Google Scholar 

  24. W. Oelsen and R. Bennewitz: “Thermodynamic Analysis. X. Calorimetry and Thermodynamics of Lead-Bismuth Alloys,” Arch. Einsenhuettenwes., 1958, 29, pp. 663–72.

    Google Scholar 

  25. M.V. Nosek and S.H. Yang: “Phase Diagram of the Bi-Hg System,” Izv. Akad. Nauk Kaz. SSR, Ser. Khim. Nauk, 1965, 15, pp. 26–32 (in Russian).

    Google Scholar 

  26. G. Petot-Ervas, M. Allibert, C. Petot, P. Desré, and E. Bonnier: “Thermodynamic Study of the Mercury-Bismuth System,” Bull. Soc. Chim. Fr., 1969, 5, pp. 1477–81 (in French).

    Google Scholar 

  27. E. Janecke: “The Ternary System Lead-Cadmium-Mercury,” Z. Phys. Chem., 1908, 60, pp. 399–413 (in Russian).

    Google Scholar 

  28. S.H. Yang, M.V. Nosek, N.M. Semibratova, and A.E. Shalamov: “Phase Diagram of the Lead-Mercury System,” Tr. Inst. Khim. Nauk, Akad. Nauk Kaz. SSR, 1967, 15, pp. 139–49 (in Russian).

    Google Scholar 

  29. L.A. Zabdyr and C. Guminski: “The Bi-Hg (Bismuth-Mercury) System,” J. Phase Equilib., 1996, 17, pp. 230–36.

    Article  Google Scholar 

  30. L.A. Zabdyr and C. Guminski: “The Hg-Pb (Mercury-Lead) System,” J. Phase Equilib., 1993, 14, pp. 734–42.

    Article  Google Scholar 

  31. E.D. Eastmann and J.H. Hildebrand: “Vapor Pressure of Silver, Gold, and Bismuth Amalgams,” J. Am. Chem. Soc., 1914, 36, pp. 2020–30.

    Article  Google Scholar 

  32. B. Predel and D. Rothacker: “Thermodynamic Investigation of Mercury-Cadmium and Mercury-Bismuth Alloys,” J. Less-Common Met., 1966, 10, pp. 392–401 (in German).

    Article  Google Scholar 

  33. B. Predel and D. Rothacker: “Thermodynamic Studies on Molten Mercury-Thallium and Mercury-Lead Alloys,” J. Less-Common Met., 1969, 17, pp. 223–34 (in German).

    Article  Google Scholar 

  34. Z.C. Wang, X.H. Zhang, Y.Z. He, and Y.H. Bao: “A New Form of the High-Temperature Isopiestic Technique and Its Application to Mercury-Bismuth, Mercury-Cadmium, Mercury-Gallium, Mercury-Indium, and Mercury-Tin Binary Amalgams,” J. Chem. Faraday Trans., 1, 1988, 84, pp. 4369–76.

    Article  Google Scholar 

  35. X. Zhang, Y. He, Y. Bao, and Z. Wang: Acta Metall. Sin., 1989, 25, pp. 286–87 (in Chinese).

    Google Scholar 

  36. O.J. Kleppa: “Thermodynamic Analysis of Binary Liquid Alloys of Group IIB Metals. III. The Solutions of Zinc, Cadmium, Indium, Tin, Thallium, Lead, and Bismuth in Mercury,” Acta Metall., 1960, 8, pp. 435–45.

    Article  Google Scholar 

  37. E. Wittig and P. Scheidt: Naturwissenchaften, 1960, 47, pp. 250–51 (in German).

    Article  ADS  Google Scholar 

  38. F. Marco, J. Navarro, and V. Torra: “Applications of Flow Calorimetry to the Study of Alloy Formation. I. Enthalpies of Solution of In, Tl, Cd, Zn, Pb, Ga, Sn, and Bi in Hg at 298.15 K,” J. Chem. Thermodyn., 1975, 7, pp. 1059–66.

    Article  Google Scholar 

  39. R.Sh. Nigmetova and L.F. Kozin: “Thermodynamic Properties of a Lead-Bismuth-Mercury System,” Izv. Akad. Nauk SSR, Met., 1970, 1, pp. 214–20 (in Russian).

    Google Scholar 

  40. G.V. Malyutin and M.V. Nosek: “Nonvariant Equilibriums in the Lead-Bismuth-Mercury System,” Izv. Akad. Nauk Kaz. SSR, Ser. Khim., 1975, 25, pp. 51–53 (in Russian).

    Google Scholar 

  41. M. Ellner and B. Predel: “Structure of Thallium-Tin(h) and Its Crystal Chemical Relation to Similar Phases,” Z. Metallkd., 1975, 66, pp. 503–06 (in German).

    Google Scholar 

  42. T. Kaemmel, E.P. Mueller, L. Krossner, J. Nebel, H. Unger, and H. Ungethuem: “Are Mercury-Lead (HgPb2) and Mercury-Lead) Minerals Formed of Natural Accessory Components of Natural Gases of Altmark Deposits,” Z. Angew. Geol., 1978, 24, pp. 90–96 (in German).

    Google Scholar 

  43. B. Sundman, B. Jansson, and J.O. Anderson: “The Thermo-Calc Databank System,” CALPHAD, 1985, 9, pp. 153–90.

    Article  Google Scholar 

  44. N.A. Pushin: Z. Anorg. Chem., 1903, 36, p. 201 (in German).

    Article  Google Scholar 

  45. J.P. Dumas, L. Bougarfa, and J. Bansaid: “Phase Changes During Electrolysis of Mercury-Thallium, Mercury-Tin, Mercury-Lead, and Mercury-Zinc Systems,” J. Phys., 1984, 45, pp. 1543–48 (in French).

    Google Scholar 

  46. G. Tammann: Z. Phys. Chem., 1889, 3, p. 441 (in German).

    Google Scholar 

  47. A.S. Moshkevich and A.A. Ravdel: “Kinetics of the Dissolution of Lead in Mercury,” Zh. Prikl. Khim., 1970, 43, pp. 71–75 (in Russian).

    Google Scholar 

  48. B.N. Aleksandrov and O.I. Lomonos: “Solubility of Metals in Solid Mercury,” Zh. Fiz. Khim., 1971, 45, pp. 3003–06 (in Russian).

    Google Scholar 

  49. H. Schenk, E. Steinmetz, and M.G. Frohberg: Arch. Einsenhuettenwes., 1963, 34, p. 561 (in German).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maitre, A., Fiorani, J.M. & Vilasi, M. Thermodynamic study of phase equilibria in the Pb-Bi-Hg system. JPE 23, 329 (2002). https://doi.org/10.1361/105497102770331578

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1361/105497102770331578

Keywords

Navigation