Skip to main content
Log in

Thermodynamic assessment of the Ni-Zn system

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

The Ni-Zn binary phase diagram has been evaluated using the CALPHAD method. In this analysis, the intermetallic β, β1, and γ phases are described using the sublattice model. The δ (Ni2Zn15) phase is treated as a stoichiometric compound because of its narrow solution range. The parameters used for the model were derived from an optimization procedure using the available experimental data in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Tafel: “Zinc and Nickel,” Metallurgie, 1907, 4, p. 871.

    Google Scholar 

  2. V. Tafel: “Studies on the Constitution of the Zn-Cu-Ni Alloys,” Metallurgie, 1908, 5, pp. 413–14 and 428–30.

    Google Scholar 

  3. G. Voss: “Alloys of Nickel-Tin, Nickel-Lead, Nickel-Thallium, Nickel-Bismuth, Nickel-Chromium, Nickel-Zinc, and Nickel-Cadmium,” Z. Anorg. Chem., 1908, 57, pp. 34–71.

    Article  Google Scholar 

  4. W. Ekman: “Structure Analysis of the Binary Alloys of the Transition Elements with Zn, Cd, and Al,” Z. Phys. Chem. B, 1931, 12, pp. 57–77.

    Google Scholar 

  5. W. Heike, J. Schramm, and O. Vaupel: “The Structure of Nickel-Zinc Alloys,” Metallwirtschaft, 1932, 11, pp. 325–30 and 539–42.

    Google Scholar 

  6. K. Tamaru: “On the Equilibrium Diagram of the Nickel-Zinc System,” Sci. Rep. Tohoku Imp Univ., 1932, 21, pp. 344–46.

    Google Scholar 

  7. W. Heike, J. Schramm, and O. Vaupel: “The Structure of Nickel-Zinc Alloys II,” Metallwirtschaft, 1933, 12, pp. 115–20.

    Google Scholar 

  8. K. Tamaru and A. Osawa: “On Further Investigation of the Equilibrium Diagram of the Nickel-Zinc System,” Sci. Rep. Tohoku Imp Univ., 1934, 23, pp. 794–815.

    Google Scholar 

  9. M. Hansen: Der Aufbau von Zweistofflegierungen, Springer Verlag, Berlin, Germany, 1936, pp. 963–69.

    Google Scholar 

  10. W. Heike, J. Schramm, and O. Vaupel: “The System Nickel-Zinc,” Metallwirtschaft, 1936, 15, pp. 655–62.

    Google Scholar 

  11. J. Schramm: “X-ray Investigation of the Ternary System Ci-Cu-Zn,” Metallwirtschaft, 1936, 15, pp. 723–26.

    Google Scholar 

  12. V. Marian: “The Ferromagnetic Curie Points and Absolute Saturation of Several Nickel Alloys,” Ann. Phys., 1937, 7, pp. 459–527.

    Google Scholar 

  13. J. Schramm: “X-ray Investigation of Phase Limits of the Zinc Alloy System with Fe, Co, Ni,” Z. Metallkde., 1938, 30, pp. 122–30.

    Google Scholar 

  14. J. Schramm: “Magnetic Susceptibility of Alloys of Zinc with Ni, Co, and Fe,” Z. Metallkde., 1938, 30, pp. 327–34.

    Google Scholar 

  15. J. Schramm: “Heat of Formation for 3 Phase Transformations in the Binary Alloys of Zn with Ni, Co, Fe, and Mn,” Z. Metallkde., 1938, 30, pp. 131–35.

    Google Scholar 

  16. F. Pawlek: “The Effect of the Fe-Group Metals on the Properties of Zn,” Z. Metallkde., 1938, 30, pp. 105–11.

    Google Scholar 

  17. O. Redlich and A. Kister: “Algebraic Representation of Thermodynamic Properties and Classification of Solutions,” Indust. Eng. Chem., 1948, 40, pp. 345–48.

    Article  Google Scholar 

  18. H. Nowotny and H. Bittner: “The Problem of Anomalous Diamagnetism,” Monatsh. Chem., 1950, 81, pp. 887–906.

    Article  Google Scholar 

  19. E.V. Clougherty and L. Kaufman: “The Thermodynamic Properties of α fcc Nickel-Zinc Alloys,” Acta Metall., 1963, 11, pp. 1043–50.

    Article  Google Scholar 

  20. T.G. Chart, J.K. Critchley, and R. Williams: “Thermodynamic Data for Nickel-Zinc Alloys,” J. Inst. Met., 1968, 96, p. 228.

    Google Scholar 

  21. A. Johansson, H. Ljung, and S. Westman: “X-ray and Neutron Diffraction Studies on Gamma-Nickel-Zinc and Gamma-Iron-Zinc,” Acta Chem. Scan., 1968 22(9), pp. 2743–53.

    Article  Google Scholar 

  22. L. Kaufman and H. Bernstein: Computer Calculation of Phase Diagrams, Academic Press, New York, 1970.

    Google Scholar 

  23. B.I. Lyazgin, V.A. Lebedev, G.N. Kazantsev, I.F. Nichkov, S.P. Raspopin, and V.I. Tynkavkin: “Thermodynamic Properties of Zn-Ni Alloys,” Izv. Akad. Nauk SSSR, Met., 1979, 4, pp. 157–61 (in Russian); TR: Russ. Metall., 1970, 4, pp. 115–17.

    Google Scholar 

  24. M. Hillert and L.-I. Staffansson: “Regular Solution Model for Stoichiometric Phases and Ionic Melts,” Acta Chem. Scand., 1970, 24, pp. 3618–26.

    Article  Google Scholar 

  25. Y.A. Chang, I. Gyuk, and J. Franks: “Thermodynamic of Lattice Disorder of CsCl-Type Intermetallic Phase at Nonstoichiometric Compositions and the Thermodynamic Properties of β-AuCd and βAgMg,” Acta Metall., 1971, 19, pp. 939–53.

    Article  Google Scholar 

  26. I. Gyuk and Y. A. Chang: “Thermodynamic and Lattice Disorder in CsCl Phases,” Scripta Metall., 1972, 6, pp. 267–76.

    Article  Google Scholar 

  27. S.A. Ali and V.A. Geiderik: “Thermodynamic Properties of Nickel and Zinc Solid Alloys,” J. Phys. Chem., 1972, 46(10), pp. 2514–18.

    Google Scholar 

  28. W.W. Liang, J.W. Franks, and Y.A. Chang: “Thermodynamic Activity of β-NiZn Phase by the Dew Point Method,” Metall. Trans., 1972, 3, pp. 2555–56.

    Article  Google Scholar 

  29. W.W. Liang, Y.A. Chang and S. Lau: “The Effect of Lattice Disorder on the Thermodynamic Properties of the β1 Ni-Zn Alloys,” Acta Metall., 1973, 21, pp. 629–37.

    Article  Google Scholar 

  30. R.P. Anantatmula and D.B. Masson: “Thermodynamic Properties of Solid Ni-Zn Alloys by Atomic Absorption,” Metall. Trans., 1974, 5, pp. 605–13.

    Article  Google Scholar 

  31. S. Budurov, G. Vasily, and N. Nenchev: “Nickel-Rich Side of the Ni-Zn Phase Diagram Z,” Z. Metallkd., 1974, 65(11), pp. 681–83.

    Google Scholar 

  32. S. Lau, Y.A. Chang and S. Kou: “Thermodynamics of the β Ni-Zn Intermetallic Phase Exhibiting the CsCl Structure,” Metall. Trans. A, 1974, 5, pp. 1979–86.

    Article  ADS  Google Scholar 

  33. Y.A. Chang, G. Henning, and D. Naujick: “Thermodynamics of the Terminal fcc Ni-Zn Solid Solutions,” Acta Metall., 1974, 22(1), pp. 7–11.

    Article  Google Scholar 

  34. S. Kou and Y.A. Chang: “Thermodynamics of β-NiZn and αNiZn Phases,” Metall. Trans. A, 1975, 6, pp. 245–48.

    Google Scholar 

  35. S. Budurov, G. Wassilew, and L. Mandadshieva: “Thermodynamics of Co-Zn and Ni-Zn Austenites,” Z. Metallkd., 1976, 67, pp. 307–10.

    Google Scholar 

  36. S. Budurov and G. Wassilew: “The Thermodynamics of Beta and Gamma Intermetallic Compounds of Ni-Zn and Co-Zn Systems,” Z. Metallkd., 1977, 68, pp. 795–98.

    Google Scholar 

  37. H. Hagiwara, S. Sugino, and K. Yamaguchi: “Activity of Zinc in Liquid Nickel-Zinc Alloys,” Bull. Univ. Osaka Proj., 1977, 26, pp. 81–86.

    Google Scholar 

  38. A. J. Morton: “Inversion Domains in Gamma-Brass Type Phases. Stabilization Mechanism-Role of Electron Concentration,” Phys. Status Solidi, 1977, 44(1), pp. 205–14.

    Article  Google Scholar 

  39. M. Hillert and M. Jarl: “A Model for Alloying Effect in Ferromagnetic Metals,” CALPHAD, 1978, 2, pp. 227–38.

    Article  Google Scholar 

  40. A.J. Morton: “The Gamma-Phase Regions of the CuZn, Ni-Zn and Pd-Zn Binary Systems,” Acta Metall., 1979, 27(5), pp. 863–67.

    Article  Google Scholar 

  41. N. Ahmad and J.N. Pratt: “On the Enthalpies and Entropies of Formation of Solid Nickel-Zinc Alloys,” Thermochim. Acta, 1981, 45, pp. 139–51.

    Article  Google Scholar 

  42. C. Cunat, M. Dirand, J.P. Hilger, and J. Hertz: “Thermodynamic Properties of Binary System Ni-Zn in Solid Phase,” Ann. Chim., 1982, 7, pp. 353–68.

    Google Scholar 

  43. W. Vogelbein, B. Predel, and Y.A. Chang: “Thermodynamic Properties of Binary System Ni-Zn in Solid Phase,” Z. Metallkd., 1982, 73, pp. 530–33.

    Google Scholar 

  44. B. Sundman, B. Janson, and J.-O. Anderson: “The Thermo-Cal Data Bank System,” CALPHAD, 1985, 9(2), pp. 153–90.

    Article  Google Scholar 

  45. P. Nash and Y.Y. Pan: “The Ni-Zn System,” Bull. Alloy Phase Diagrams, 1987, 8, pp. 422–30.

    Google Scholar 

  46. A.T. Dinsdale: “SGTE Data for Pure Elements,” CALPHAD, 1991, 15(4), pp. 317–425.

    Article  Google Scholar 

  47. G.P. Vassilev: “Thermodynamic Evaluation of the Nickel-Rich Part of the Ni-Zn System,” Cryst. Res. Technol., 1992, 27(4), pp. 523–27.

    Article  Google Scholar 

  48. G.P. Vassilev: “Thermodynamic Evaluation of the Ni-Zn System,” J. Alloys Compds, 1992, 190, pp. 107–112.

    Article  Google Scholar 

  49. V.I. Dybkov and O.V. Duchenko: “The Homogeneity Ranges of the Delta and Gamma Phases of the Ni-Zn Binary System,” J. Phase Equilibria, 1998, 19, pp. 434–40.

    Article  Google Scholar 

  50. G.P. Vassilev, T. Gomez-Acebo, and J.-C. Tedenac: “Thermodynamic Optimization of the Ni-Zn System,” J. Phase Equilibria, 2000, 21(3), pp. 287–301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, X., Tang, NY. & Toguri, J.M. Thermodynamic assessment of the Ni-Zn system. JPE 23, 140 (2002). https://doi.org/10.1361/1054971023604125

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1361/1054971023604125

Keywords

Navigation