Skip to main content
Log in

Phase equilibria and thermodynamic properties in the RE-Ni (RE = rare earth metals) binary systems

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The RE-Ni (RE = La, Ce, Nd, Tb and Ho) binary systems have been optimized thermodynamically using the CALPHAD (CALculation of PhAse Diagram) method based on experimental phase equilibrium and thermodynamic property data. The solution phases including the liquid phase and terminal solid solution phases were modeled by the substitutional solution model with the excess Gibbs energy being described by the Redlich–Kister polynomials. The binary intermetallic compounds REaNib were treated either as stoichiometric phases or by using the two-sublattice model to consider the homogeneity ranges of the compounds. A set of self-consistent thermodynamic parameters of the RE-Ni (RE = La, Ce, Nd, Tb and Ho) binary systems was obtained, which can be used to reproduce well the experimental data. Furthermore, in combination with the reported assessments of the RE-Ni (RE = Pr, Sm, Gd, Dy, Er and Y) binary systems, the phase equilibria and thermodynamic properties of the RE-Ni (RE = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Y) binary systems were examined systematically. A trend was shown for the variation of phase equilibria and thermodynamic properties as a function of the RE atomic number. In general, as the atomic number of the rare earth metals increases, the phase transition/reaction temperatures of the RE-Ni intermetallic compounds become higher and higher, and the enthalpies of mixing of liquid RE-Ni (except for Sm-Ni) alloys as well as the enthalpies of formation of the RE-Ni (except for Y-Ni and Sm-Ni) intermetallic compounds become increasingly negative. This trend demonstrates stronger RE-Ni bonds in binary systems containing heavier rare earth elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26

Similar content being viewed by others

References

  1. Abrahams SC, Bernstein JL, Sherwood RC, Wernick JH, Williams HJ (1964) The crystal structure and magnetic properties of the rare-earth nickel (RNi) compounds. J Phys Chem Solids 25:1069–1080

    Article  CAS  Google Scholar 

  2. Van Mal HH, Buschow KHJ, Miedema AR (1976) Hydrogen absorption of rare-earth (3d) transition intermetallic compounds. J Less-Common Metals 49:473–475

    Article  Google Scholar 

  3. Buschow KHJ (1977) Intermetallic compounds of rare-earth and 3d transition metals. Rep Prog Phys 40:1179

    Article  CAS  Google Scholar 

  4. Zhou XZ, Li HY, Liu YZ, Li YX (2019) Function, energy and environment orientation in innovation research of rare earth materials. Sci China Technol Sci 62:2302–2305

    Article  Google Scholar 

  5. Talaganis BA, Esquivel MR, Meyer G (2009) A two-stage hydrogen compressor based on (La, Ce, Nd, Pr)Ni5 intermetallics obtained by low energy mechanical alloying – low temperature annealing treatment. Int J Hydrog Energy 34:2062–2068

    Article  CAS  Google Scholar 

  6. Joubert JM, Paul-Boncour V, Cuevas F, Zhang JX, Latroche M (2020) LaNi5 related AB5 compounds: structure, properties and applications. J Alloy Compd 862:158163

    Article  Google Scholar 

  7. Li D, Wang Y, Wu L, Yang FS, Wu Z, Zheng L, Song J, Zang XY, Zhang ZX (2020) Kinetics study on the nonlinear modified varying-size model of LaNi5 during hydrogenation/dehydrogenation. Chem Eng Sci 214:115439

    Article  CAS  Google Scholar 

  8. Liu W, Aguey-Zinsou KF (2016) Low temperature synthesis of LaNi5 nanoparticles for hydrogen storage. Int J Hydrog Energy 41:1679–1687

    Article  CAS  Google Scholar 

  9. Kisi EH, Buckley CE, Gray EM (1992) The hydrogen activation of LaNi5. J Alloy Compd 185:369–384

    Article  CAS  Google Scholar 

  10. Casini JCS, Silva FM, Guo ZP, Liu HK, Faria RN, Takiishi H (2016) Effects of substituting Cu for Sn on the microstructure and hydrogen absorption properties of Co-free AB5 alloys. Int J Hydrog Energy 41:17022–17028

    Article  CAS  Google Scholar 

  11. Tarasov BP, Bocharnikov MS, Yanenko YB, Fursikov PV, Lototskyy MV (2018) Cycling stability of RNi5 (R=La, La+Ce) hydrides during the operation of metal hydride hydrogen compressor. Int J Hydrog Energy 43:4415–4427

    Article  CAS  Google Scholar 

  12. Spodaryk M, Gasilova N, Züttel A (2019) Hydrogen storage and electrochemical properties of LaNi5-xCux hydride-forming alloys. J Alloy Compd 775:175–180

    Article  CAS  Google Scholar 

  13. Wjihi S, Sellaoui L, Bouzid M, Dhaou H, Knani S, Jemni A, Lamine AB (2017) Theoretical study of hydrogen sorption on LaNi5 using statistical physics treatment: microscopic and macroscopic investigation. Int J Hydrog Energy 42:2699–2712

    Article  CAS  Google Scholar 

  14. de Almeida Neto GR, Beatrice CAG, Leiva DR, Pessan LA (2020) Polymer-based composite containing nanostructured LaNi5 for hydrogen storage: improved air stability and processability. Int J Hydrog Energy 45:14017–14027

    Article  CAS  Google Scholar 

  15. Daryani M, Kazemzad M, Ebadzadeh T, Kaflou A (2019) Study of the effect of praseodymium substitution on hydrogen storage and electrochemical properties of cerium-rich AB5 alloys. J Iran Chem Soc 16:2707–2717

    Article  CAS  Google Scholar 

  16. Pinatel ER, Palumbo M, Massimino F, Rizzi P, Baricco M (2015) Hydrogen sorption in the LaNi5-xAlx-H system (0 ≤ x ≤ 1). Intermetallics 62:7–16

    Article  CAS  Google Scholar 

  17. Yamamoto T, Inui H, Yamaguchi M, Sato K, Fujitani S, Yonezu I, Nishio K (1997) Microstructures and hydrogen absorption/desorption properties of La-Ni alloys in the composition range of La-77.8∼83.2 at.% Ni. Acta Mater 45:5213–5221

    Article  CAS  Google Scholar 

  18. Wang L, Zhang X, Zhou S, Xu J, Yan HZ, Luo Q, Li Q (2020) Effect of Al content on the structural and electrochemical properties of A2B7 type La-Y-Ni based hydrogen storage alloy. Int J Hydrog Energy 45:16677–16689

    Article  CAS  Google Scholar 

  19. Gal L, Charbonnier V, Zhang J, Goubault L, Bernard P, Latroche M (2015) Optimization of the La substitution by Mg in the La2Ni7 hydride-forming system for use as negative electrode in Ni-MH battery. Int J Hydrog Energy 40:17017–17020

    Article  CAS  Google Scholar 

  20. Baran S, Kurzydo P, Yu T, Hoser A, Szytula A (2020) Magnetic properties and magnetic structures in R3Ni2In4 (R=Tb-Tm). J Alloy Compd 832:154926

    Article  CAS  Google Scholar 

  21. Alho BP, Lopes PHO, Ribeiro PO, Alvarenga TST, Nobrega EP, de Sousa VSR, Carvalho AMG, Caldas A, Tedesco JCG, Coelho AA, de Oliveira NA, von Ranke PJ (2018) Magnetic and magnetocaloric properties in Gd1-yPryNi2 compounds. J Magn Magn Mater 449:308–312

    Article  CAS  Google Scholar 

  22. Chen X, Mudryk Y, Pathak AK, Feng W, Pecharsky VK (2017) Magnetic and magnetocaloric properties of spin-glass material DyNi0. 67Si1.34. J Magn Magn Mater 436:91–96

    Article  CAS  Google Scholar 

  23. Chzhan VB, Tereshina IS, Kurganskaya AA, Lushnikov SA, Verbetsky VN, Tereshina-Chitrova EA (2020) New magnetic materials based on RNi compounds for cryogenic technology. Tech Phys Lett 46:303–306

    Article  CAS  Google Scholar 

  24. De Souza MV (2016) Investigation on the magnetocaloric effect in RNi2 (R: Dy, Tb) melt-spun ribbon. J Magn Magn Mater 412:11–14

    Article  Google Scholar 

  25. Ćwik J, Koshkid’ko Y, Kolchugina N, Nenkov K, de Oliveirad NA (2019) Thermal and magnetic effects in quasi-binary Tb1-xDyxNi2 (x=0.25, 0.5, 0.75) intermetallics. Acta Mater 173:27–33

    Article  Google Scholar 

  26. Chzhan VB, Kurganskaya AA, Tereshina IS, Yu Karpenkov A, Ovchenkova IA, Tereshina-Chitrova EA, Andreev AV, Gorbunov DI, Lushnikov SA, Verbetsky VN (2021) Influence of interstitial and substitutional atoms on magnetocaloric effects in RNi compounds. Mater Chem Phys 264:124455

    Article  CAS  Google Scholar 

  27. Kurian J, Rahul MR, Chelvane JA, Morozkin AV, Nigam AK, Phanikumar G, Nirmala R (2020) Enhanced magnetocaloric effect in undercooled rare earth intermetallic compounds RNi (R=Gd, Ho and Er). J Magn Magn Mater 499:166302

    Article  CAS  Google Scholar 

  28. Fartushna I, Mardani M, Bajenova I, Khvan A, Cheverikin V, Richter KW, Kondratiev A (2020) Phase transformations and phase equilibria in the La-Ni and La-Ni-Fe systems. Part 1: liquidus & solidus projections. J Alloy Compd 845:156356

    Article  CAS  Google Scholar 

  29. An XH, Gu QF, Zhang JY, Chen SL, Yu XB, Li Q (2013) Experimental investigation and thermodynamic reassessment of La-Ni and LaNi5-H systems. Calphad 40:48–55

    Article  CAS  Google Scholar 

  30. Du Z, Wang D, Zhang W (1998) Thermodynamic assessment of the La-Ni system. J Alloy Compd 264:209–213

    Article  CAS  Google Scholar 

  31. Dischinger J, Schaller HJ (2000) On the constitution and thermodynamics of Ni-La alloys. J Alloy Compd 312:201–210

    Article  CAS  Google Scholar 

  32. Liu LB, Jin ZP (2000) Thermodynamic reassessment of the La-Ni system. Z Met 91:739–743

    CAS  Google Scholar 

  33. Mardani M, Fartushna I, Khvan A, Cheverikin V, Dinsdale A (2019) Experimental investigation of phase equilibria in the Ce-Fe-Ni system. J Alloy Compd 781:524–540

    Article  CAS  Google Scholar 

  34. Hussain A, Van Ende MA, Kim J, Jung IH (2013) Critical thermodynamic evaluation and optimization of the Co-Nd, Cu-Nd and Nd-Ni systems. Calphad 41:26–41

    Article  CAS  Google Scholar 

  35. Huang M, McCallum RW, Lograsso TA (2005) Experimental investigation and thermodynamic modeling of the Nd-Ni system. J Alloy Compd 398:127–132

    Article  CAS  Google Scholar 

  36. Luo Q, Chen SL, Zhang JY, Li L, Chou KC, Li Q (2015) Experimental investigation and thermodynamic assessment of Nd-H and Nd-Ni-H systems. Calphad 51:282–291

    Article  CAS  Google Scholar 

  37. Du Y, Clavaguera N (1996) Thermodynamic calculation of the Nd-Ni system. Calphad 20:289–296

    Article  CAS  Google Scholar 

  38. Sudavtsova VS, Shevchenko MO, Ivanov MI, Kudin VG, Podopryhora NV (2020) Thermodynamic properties and phase equilibria of Nd-Ni alloys. Powder Metall Met Ceram 58:581–590

    Article  CAS  Google Scholar 

  39. Yao QR, Wang YC, Zhou HY (2005) Phase diagram of the Tb-Ni binary system. J Alloy Compd 395:98–100

    Article  CAS  Google Scholar 

  40. Kardellass S, Servant C, Selhaoui N (2015) Thermodynamic description of the holmium-nickel system. J Therm Anal Calorim 119:1225–1234

    Article  CAS  Google Scholar 

  41. Dinsdale AT (1991) SGTE data for pure elements. Calphad 15:317–425

    Article  CAS  Google Scholar 

  42. Hillert M, Jarl M (1978) A model for alloying in ferromagnetic metals. Calphad 2:227–238

    Article  CAS  Google Scholar 

  43. Ansara I, Chart TG, Guillermet AF, Hayes FH, Kattner UR, Pettifor DG, Saunders N, Zeng K (1997) Thermodynamic modelling of solutions and alloys-Schloss Ringberg, March 10 to March 16, 1996-group 2: alloy system I-thermodynamic modelling of selected topologically close-packed intermetallic compounds. Calphad 21:171–218

    CAS  Google Scholar 

  44. Kim DY, Ohtsuka M, Itagaki K (1994) Study on reactive diffusion in Ni-RE (RE=Ce, Pr, Nd) binary alloys. J Min Mater Process Inst Jpn 110:95–101

    CAS  Google Scholar 

  45. Zhou HY, Ou XL, Zhong XP (1991) An investigation of the Ho-Ni phase diagram. J Alloy Compd 177:101–106

    Article  CAS  Google Scholar 

  46. Sundman B, Jansson B, Andersson JO (1985) The thermo-calc databank system. Calphad 9:153–190

    Article  CAS  Google Scholar 

  47. Konar B, Kim J, Jung IH (2016) Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE=La, Ce, Pr, Nd and Sm. J Phase Equilibria Diffus 37:438–458

    Article  CAS  Google Scholar 

  48. Konar B, Kim J, Jung IH (2017) Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE= Gd, Tb, Dy, Ho, Er, Tm, Lu, and Y. J Phase Equilibria Diffus 38:509–542

    Article  CAS  Google Scholar 

  49. Kim J, Jung IH (2012) Critical systematic evaluation and thermodynamic optimization of the Mn-RE system: RE=La, Ce, Pr, Nd and Sm. J Alloy Compd 525:191–201

    Article  CAS  Google Scholar 

  50. Kim J, Paliwal M, Zhou S, Choi H, Jung IH (2014) Critical systematic evaluation and thermodynamic optimization of the Mn-RE system (RE=Tb, Dy, Ho, Er, Tm and Lu) with key experiments for the Mn-Dy system. J Phase Equilibria Diffus 35:670–694

    Article  CAS  Google Scholar 

  51. Qi G, Li Z, Itagaki K, Yazawa A (1989) High temperature phase relations in Ni-RE (RE=La, Ce, Pr, Nd) binary and ternary alloy systems. Mater Trans JIM 30:583–593

    Article  CAS  Google Scholar 

  52. Zhang DY, Tang J, Gschneidner KA (1991) A redetermination of the La-Ni phase diagram from LaNi to LaNi5 (50 to 83.3 at.% Ni). Mater Sci Forum 70–72:467–480

    Article  Google Scholar 

  53. Buschow KH, Van Mal HH (1972) Phase relations and hydrogen absorption in the lanthanum-nickel system. J Less-Common Met 29:203–210

    Article  CAS  Google Scholar 

  54. Vogel R, Fülling W (1947) Über die Systeme Cer-Nickel, Lanthan-Nikel, Praseodym-Nickel und Cer-Kobalt. Int J Mater Res 38:97–103 ((in German))

    Article  Google Scholar 

  55. Ivanchenko V, Kobzenko G, Svechnikov V (1982) Phase equilibria in the La-Ni system. Dopovidi Akademii Nauk Ukrains’ koj RSR 1:83–86 ((in Russian))

    Google Scholar 

  56. Inui H, Yamamoto T, Di Z, Yamaguchi M (1999) Microstructures and defect structures in intermetallic compounds in the La-Ni alloy system. J Alloy Compd 293:140–145

    Article  Google Scholar 

  57. Watanabe S, Kleppa OJ (1983) A thermochemical study of liquid and solid alloys ‘(1–x) La+ xNi’ at 1376 K. J Chem Thermodyn 15:633–644

    Article  CAS  Google Scholar 

  58. Subotenko PM, Kudin VG, Shevchenko MO, Ivanov MI, Berezutskii VV, Sudavtsova VS (2017) Thermodynamic properties of La-Ni Alloys. Powder Metall Met Ceram 55:717–725

    Article  CAS  Google Scholar 

  59. Rezukhina TN, Kutsev SV (1982) Thermodynamic properties of intermetallic compounds in La-Ni system. Zhurnal Fizicheskoj Khimii 56:1–10

    CAS  Google Scholar 

  60. Hubbard WN, Rawlins PL, Connick PA, Stedwell RE, O’Hare PAG (1983) The standard enthalpy of formation of LaNi5 the enthalpies of hydriding of LaNi5-xAlx. J Chem Thermodyn 15:785–798

    Article  CAS  Google Scholar 

  61. Semenenko KN, Sirotina RA, Savchenkova AP (1979) Thermochemical investigations into intermetallic compounds formed in La-Ni system. Zhurnal Fizicheskoj Khimii 53:2373–2374

    CAS  Google Scholar 

  62. Colinet C, Pasturel A, Percheronguegan A, Achard JC (1987) Enthalpies of formation and hydrogenation of La(Ni1-xCox)5 compounds. J Less-Common Met 134:109–122

    Article  CAS  Google Scholar 

  63. Pasturel A, Colinet C, Allibert C, Hicter P, Percheron-Guegan A, Achard JC (1984) A theoretical and experimental study of the enthalpies of formation of LaNi5-type compounds. Phys Status Solidi B 125:101–106

    Article  CAS  Google Scholar 

  64. Pasturel A, Liautaud F, Colinet C, Allibert C, Percheron-Guégan A, Achard JC (1984) Thermodynamic study of the LaNi5-xCux system. J Less-Common Met 96:93–97

    Article  CAS  Google Scholar 

  65. The Open Quantum Materials Database. http://oqmd.org/. Accessed 5 May 2021

  66. The Materials Project. https://materialsproject.org/. Accessed 5 May 2021

  67. Yamaguchi K, Kim DY, Ohtsuka M, Itagaki K (1995) Heat content and heat of formation measurements of RNi5±x alloys (R=La, Ce, Pr or Nd) and heat balance in a reduction-diffusion process. J Alloy Compd 221:161–168

    Article  CAS  Google Scholar 

  68. Xiong W, Du Y, Lu XG, Schuster JC, Chen HL (2007) Reassessment of the Ce-Ni binary system supported by key experiments and ab initio calculations. Intermetallics 15:1401–1408

    Article  CAS  Google Scholar 

  69. Pisch A, Wang J, Jorda JL (2006) Thermodynamic modelling of the Ce-Ni system. Int J Mater Res 97:737–743

    CAS  Google Scholar 

  70. Gebhart JM, Etter DE, Tucker PA (1967) Proceedings of the sixth R.E. research conference, Rare Earth Information Centre, Ames, IA, 3–5 May 1967, pp 452–457

  71. Gschneidner KA, Verkade ME (1974) Selected cerium phase diagrams document IS-RIC-7, Iowa State University, Rare-Earth Information Center, pp 28-29

  72. Duisemaliev UK (1964) Solubility of cerium in nickel and the mechanical properties of nickel-cerium alloys. Russ J Inorg Chem 9:417–419

    Google Scholar 

  73. Perkins RH, Geoffion LA, Biery JC (1965) Densities of some low melting cerium alloys, Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers 233:1703-1710

  74. Du ZM, Yang LS, Ling G (2004) Thermodynamic assessment of the Ce-Ni system. J Alloy Compd 375:186–190

    Article  CAS  Google Scholar 

  75. Palumbo M, Borzone G, Delsante S, Parodi N, Cacciamani G, Ferro R, Battezzati L, Baricco M (2004) Thermodynamic analysis and assessment of the Ce-Ni system. Intermetallics 12:1367–1372

    Article  CAS  Google Scholar 

  76. Sudavtsov VS, Gorobets YG, Batalin GI (1988) Enthalpies of forming liquid binary alloys in the Ce-(Si, Ni, Cu) systems. Rasplavy 2:79–81

    Google Scholar 

  77. Nikolaenko IV, Vlasova OV (1992) Enthalpy of mixing of nickel with cerium and valent state of cerium in melt. Rasplavy 4:79–83

    Google Scholar 

  78. Ivanov MI, Berezutskii VV, Shevchenko MO, Subotenko PM, Kudin VG, Sudavtsova VS (2016) Thermodynamic properties of Ce-Ni binary alloys. Powder Metall Met Ceram 54:590–598

    Article  CAS  Google Scholar 

  79. Wang J, Jorda JL, Pisch A, Flükiger R (2006) Experimental study of the CeNi5-CeCu5 system. Intermetallics 14:695–701

    Article  CAS  Google Scholar 

  80. Colinet C, Pasturel A (1983) A thermodynamic study of cerium behavior in hexagonal CeNi5 compound. Phys Status Solidi A 80:K75–K79

    Article  CAS  Google Scholar 

  81. Meyer-Liautaud F, Pasturel A, Allibert CH, Colinet C (1985) Thermodynamic study of the valence state of cerium and hydrogen storage in Ce(Ni1-xCux)5 compounds. J Less-Common Met 110:119–126

    Article  CAS  Google Scholar 

  82. Guo Q, Kleppa OJ (1998) Standard enthalpies of formation of CeNi5 and of RENi (RE=Ce, Pr, Nd, Sm, Gd, Tb, Ho, Tm and Lu), determined by high-temperature direct synthesis calorimetry. J Alloy Compd 270:212–217

    Article  CAS  Google Scholar 

  83. Reddy BP, Babu R, Nagarajan K, Vasudeva PR (1997) Enthalpies of formation of CeNi2 and CeNi5 by calorimetry. J Nucl Mater 247:235–239

    Article  Google Scholar 

  84. Pan YY, Zheng JX (1985) Phase diagram of the alloys of the neodymium-nickel binary system. Acta Phys Sin 34:384–389

    Article  CAS  Google Scholar 

  85. Lemort L, Latroche M, Knosp B, Bernard P (2011) Elaboration and characterization of unreported (Pr, Nd)5Ni19 hydrides. J Alloy Compd 509:S823–S826

    Article  CAS  Google Scholar 

  86. Rong Q, Schaller HJ (2004) On the constitution and thermodynamics of Ni-Tb alloys. J Alloy Compd 365:188–196

    Article  CAS  Google Scholar 

  87. Guo Q, Kleppa OJ (1995) Standard enthalpies of formation of terbium alloys, Tb+ Me (Me=Ni, Ru, Rh, Pd, Ir, Pt), by high-temperature direct synthesis calorimetry. J Alloy Compd 221:50–55

    Article  CAS  Google Scholar 

  88. Gozzi D, Iervolino M (2005) Thermodynamics of Ni richest intermetallics along the rare-earth series. Intermetallics 13:1172–1183

    Article  CAS  Google Scholar 

  89. Guo Q, Kleppa OJ (1996) Standard enthalpies of formation of some holmium alloys, Ho+Me (Me=Ni, Ru, Rh, Pd, Ir, Pt), determined by high temperature direct synthesis calorimetry. J Alloy Compd 234:280–286

    Article  CAS  Google Scholar 

  90. Rahou Z, Mahdouk K, Moustain D, Otmani S, Kardellass S, Iddaoudi A, Selhaoui N (2015) Thermodynamic reassessment of Ni-Pr binary system. J Alloy Compd 620:204–209

    Article  CAS  Google Scholar 

  91. Du ZM, Wang DH, Zhang WJ (1999) Thermodynamic assessment of the Co-Pr, Er-Ni and Ni-Pr systems. J Alloy Compd 284:206–212

    Article  CAS  Google Scholar 

  92. Rahou Z, Mahdouk K (2016) Thermodynamic reassessment of the Sm-Ni binary system. J Alloy Compd 664:469–475

    Article  CAS  Google Scholar 

  93. Rahou Z, Mahdouk K (2015) Thermodynamic reassessment of Gd-Ni system. J Alloy Compd 648:346–352

    Article  CAS  Google Scholar 

  94. Li M, Han W (2009) Thermodynamic description of the Dy-Ni system. Calphad 33:517–520

    Article  CAS  Google Scholar 

  95. Du ZM, Zhang WJ (1996) Thermodynamic assessment of the Ni-Y system. J Alloy Compd 245:164–167

    Article  CAS  Google Scholar 

  96. Lemaire R, Paccard D (1967) Structure cristallographique des composés intermétalliques T3Ni, T désignant un métal de terre rare ou l’yttrium. Bull Minéral 90:311–315

    CAS  Google Scholar 

  97. Pan YY, Cheng CS (1984) Chinese national symposium on phase diagrams, Kunming, p 21

  98. Huang M, Lograsso TA (2005) Experimental investigation and thermodynamic modeling of the Ni-Pr system. J Alloy Compd 395:75–79

    Article  CAS  Google Scholar 

  99. Pan YY, Zheng JX (1983) Phase diagram of Sm-Ni binary alloys. Acta Phys Sin 1:92–95 ((In Chinese))

    Article  Google Scholar 

  100. Pan YY, Nash P (1991) In: Massalski (ed) Phase diagrams of binary nickel alloys, ASM International, Materials Park, OH, pp 2861

  101. Borzone G, Yuan Y, Delsante S, Parodi N (2012) The Sm-Ni system: new phases in the Sm-rich region. Monatshefte Chem-Chem Mon 14:1299–1307

    Article  Google Scholar 

  102. Su XP, Zhang WJ, Du ZM (1998) A thermodynamic assessment of the Ni-Sm system. J Alloy Compd 278:182–184

    Article  CAS  Google Scholar 

  103. Spedding FH, Daane AH (1961) The rare earths. John Wiley and Sons, New York, p 356

    Google Scholar 

  104. Novy VF, Vickery RC, Kleber EV (1961) The gadolinium-nickel system. Trans Metall Soc AIME 221:585–588

    CAS  Google Scholar 

  105. Copeland M, Kato G (1961). In: Nachman JF, Lundin CE (eds) Rare earth research. Plenum Press, New York, p 133

    Google Scholar 

  106. Pan YY, Cheng JX, Li M, Yang H (1986) Phase diagram of Gd-Ni binary alloys. Acta Phys Sin 5:667–680 ((In Chinese))

    Google Scholar 

  107. Pan YY, Nash P (1991) In: P. Nash (ed) Phase diagrams of binary nickel alloys, ASM International, Materials Park, OH, p 140

  108. Dischinger J, Schaller HJ (1998) Highly reactive and multicomponent systems: on the constitution and thermodynamics of Ni-Gd alloys. Ber Bunsenges Phys Chem 102:1167–1172

    Article  CAS  Google Scholar 

  109. Xu GL, Cui YW, Fei HJ, Zhang LG, Zheng F, Liu LB, Jin ZP (2012) Phase equilibria in the Gd-Ni binary and Mg-Ni-Gd ternary systems. Int J Mater Res 103:1179–1187

    Article  CAS  Google Scholar 

  110. Xia CQ, Jin ZP (1997) Calculation of Gd-Ni binary phase diagram. J Cent South Univ Technol 28:363–365

    CAS  Google Scholar 

  111. Dwight AE, Conner RA, Downey JW (1965) Equiatomic compounds of the transition and lanthanide elements with Rh, Ir, Ni and Pt. Acta Crystallogr 18:835–839

    Article  CAS  Google Scholar 

  112. Baenziger NC, Moriarty JL (1961) Gadolinium and dysprosium intermetallic phases. I. The crystal structures of DyGa and GdPt and their related compounds. Acta Crystallogr 14:946–947

    Article  CAS  Google Scholar 

  113. Buschow KHJ, Van Der Goot AS (1970) The crystal structure of rare-earth nickel compounds of the type R2Ni7. J Less-Common Met 22:419–428

    Article  CAS  Google Scholar 

  114. Zheng JX, Wang CZ (1982) Phase diagram of Dy-Ni binary alloys. Acta Phys Sin 5:668–6173 ((in Chinese))

    Article  Google Scholar 

  115. Buschow KHJ (1968) Crystal structures, magnetic properties and phase relations of erbium-nickel intermetallic compounds. J Less-Common Met 16:45–53

    Article  CAS  Google Scholar 

  116. Moreau JM, Paccard D, Parthe E (1974) The monoclinic, CrB-related, crystal structure of Tb3Ni2, Dy3Ni2 and Ho3Ni2. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 30:2583–2586

    Article  Google Scholar 

  117. Pan YY, Nash P (1991) Phase diagrams of binary nickel alloys. ASM International, Materials Park, Ohio, pp 101–106

    Google Scholar 

  118. Beaudry BJ, Daane AH (1960) Yttrium-nickel system. Trans Metall Soc AIME 218:854–859

    CAS  Google Scholar 

  119. Domagala RF, Rausch JJ, Levinson DW (1961) The systems Y-Fe, Y-Ni, and Y-Cu. Trans Am Soc Met 53:137–155

    CAS  Google Scholar 

  120. Mezbahul-Islam M, Medraj M (2009) A critical thermodynamic assessment of the Mg-Ni, Ni-Y binary and Mg-Ni-Y ternary systems. Calphad 33:478–486

    Article  CAS  Google Scholar 

  121. Nash P (1991) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park, OH, p 2885

    Google Scholar 

  122. Mattern N, Zinkevich M, Löser W, Behr G, Acker J (2008) Experimental and thermodynamic assessment of the Nb-Ni-Y system. J Phase Equilibria Diffus 29:141–155

    Article  CAS  Google Scholar 

  123. Okamoto H (1991) Reevaluation of thermodynamic models for phase diagram evaluation. J Phase Equilibria Diffus 12:623–643

    Article  CAS  Google Scholar 

  124. Guo Q, Kleppa OJ (1995) Standard enthalpies of formation of neodymium alloys, Nd + Me (Me=Ni, Ru, Rh, Pd, Ir, Pt), by high-temperature direct synthesis calorimetry. Metall Mater Trans B 26:275–279

    Article  Google Scholar 

  125. Delsante S, Stifanese R, Borzone G (2013) Thermodynamic stability of RNi2 Laves phases. J Chem Thermodyn 65:73–77

    Article  CAS  Google Scholar 

  126. Colinet C, Pasturel A, Buschow KHJ (1987) Short range order and stability in Gd-Ni and Y-Ni systems. J Appl Phys 62:3712–3717

    Article  CAS  Google Scholar 

  127. Subramanian PR, Smith JF (1985) Thermodynamics of formation of Y-Ni alloys. Metall Trans B 16:577–584

    Article  Google Scholar 

  128. Guo Q, Kleppa OJ (1994) Standard enthalpies of formation of some praseodymium alloys by high-temperature direct synthesis calorimetry. Metall Mater Trans B 25:73–77

    Article  Google Scholar 

  129. Borzone G, Parodi N, Raggio R, Ferro R (2001) Thermodynamic investigation of samarium-nickel alloys. J Alloy Compd 317:532–536

    Article  Google Scholar 

  130. Guo Q, Kleppa OJ (1998) Standard enthalpies of formation for some samarium alloys, Sm + Me (Me=Ni, Rh, Pd, Pt), determined by high-temperature direct synthesis calorimetry. Metall Mater Trans B 29:815–820

    Article  Google Scholar 

  131. Colinet C, Pasturel A, Buschow KHJ (1986) Study of the enthalpies of formation in the Gd-Ni system. Metall Trans A 17:777–780

    Article  Google Scholar 

  132. Schott J, Sommer F (1986) Determination of the enthalpies of formation of intermetallic compounds of cobalt and nickel with dysprosium, erbium and gadolinium. J Less-Common Met 119:307–317

    Article  CAS  Google Scholar 

  133. Deodhar SS, Ficalora PJ (1975) A study of the reaction kinetics for the formation of rare earth-transition metal laves compounds. Metall Trans A 6:1909–1914

    Article  Google Scholar 

  134. Guo Q, Kleppa OJ (1995) Standard enthalpies of formation of gadolinium alloys, Gd + Me (Me=Ni, Ru, Rh, Pd, Ir, Pt), by high-temperature direct synthesis calorimetry. J Alloy Compd 221:45–49

    Article  CAS  Google Scholar 

  135. Guo Q, Kleppa OJ (1996) Standard enthalpies of formation of dysprosium alloys, Dy + Me (Me= Ni, Ru, Rh, Pd, lr, and Pt), by high-temperature direct synthesis calorimetry. Metall Mater Trans B 27:417–422

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by National Natural Science Foundation of China (51971069), Guangxi Natural Science Foundation (2020GXNSFFA297004), Guangxi Key Laboratory of Information Materials (211007-Z) and Engineering Research Center of Electronic Information Materials and Devices (EIMD-AA202004), Guilin University of Electronic Technology, China. The authors thank the support from the foundation for Guangxi Bagui scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maohua Rong or Jiang Wang.

Ethics declarations

Conflict of interest

The authors of the manuscript ‘Phase equilibria and thermodynamic properties in the RE-Ni (RE = rare earth metals) binary systems’ declare no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 101 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Rong, M., Yao, Q. et al. Phase equilibria and thermodynamic properties in the RE-Ni (RE = rare earth metals) binary systems. J Mater Sci 58, 1260–1292 (2023). https://doi.org/10.1007/s10853-022-08039-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-08039-1

Navigation