Skip to main content
Log in

Micro- and nano-structured conducting polymeric materials

  • Review
  • Published:
Chinese Science Bulletin

Abstract

Conducting polymeric materials with micro-/ nano-structures have potential applications in fabrication of various optical, electronic, sensing and electrochemical devices. This is mainly because these materials not only possess the characteristics of conducting polymers, but also have special functions based on their micro- or nano-structures. In this review, we summarize the recent work on “soft” and “hard” template-guided syntheses of micro-/nano-structured conducting polymers and open up the prospects of the main trends in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nalwa, H. S., Handbook of Nanostructured Materials and Nanotechnology, New York: Academic Press, 2000.

    Google Scholar 

  2. Shalaev, V. M., Moskovits, M., Nanostructured Materials: Clusters, Composites, and Thin Films, Washington, DC: American Chemical Society, 1997.

    Google Scholar 

  3. Edelstein, A. S., Cammarata, R. C., Nanomaterials: Synthesis, Properties, and Applications, Philadelphia, PA: Institute of Physics, 1996.

    Book  Google Scholar 

  4. Wang, J. Z., Zheng, Z. H., Li, H. W. etal., Dewetting of conducting polymer inkjet droplets on patterned surfaces, Nature Mater., 2004, 3(3): 171–176.

    Article  Google Scholar 

  5. Nagai, H., Segawa, H., Energy-storable dye-sensitized solar cell with a polypyrrole electrode, Chem. Commun., 2004, (8): 974–975.

    Article  Google Scholar 

  6. Forzani, E. S., Zhang, H. Q., Nagahara, L. A. etal., A conducting polymer nanojunction sensor for glucose detection, Nano Lett., 2004, 4(9): 1785–1788.

    Article  Google Scholar 

  7. Martin, C. R., Kohli, P., The emerging field of nanotube biotechnology, Nature Rew. Drug Discovery, 2003, 2(1): 29–37.

    Article  Google Scholar 

  8. Jager, E. W. H., Smela, E., Inganas, O., Microfabricating conjugated polymer actuators, Science, 2000, 290(5496): 1540–1545.

    Article  Google Scholar 

  9. Martin, C. R., Nanomaterials—a membrane-based synthetic approach, Science, 1994, 266(5193): 1961–1966.

    Article  Google Scholar 

  10. Popovic, M. M., Grgur, B. N., Miskovic-Stankovic, V. B., Studies on electrochemically deposited PANI and PANI/epoxy coatings on mild steel in acid sulfate solution, Progress in Org. Coatings, 2005, 52(4): 359–365.

    Article  Google Scholar 

  11. Lee, K. H., Heeger, A. J., Crossover to negative dielectric response in the low-frequency spectra of metallic polymers, Phys. Rev. B., 2003, 68: Art. No. 035201.

  12. Parthasarathy, R. V., Martin, C. R., Enzyme and chemical encapsulation in polymeric microcapsules, J. Appl. Polym. Sci., 1996, 62(6): 875–886.

    Article  Google Scholar 

  13. Yu, A., Meiser, F., Cassagneau, T. etal., Fabrication of polymer nanoparticle composite inverse Oopals by a one-stage electrochemical co-deposition process, Nano Lett., 2004, 4(1): 177–181.

    Article  Google Scholar 

  14. Zhang, L. J., Wan, M. X., Self-assembly of polyaniline—From nanotubes to hollow microspheres, Adv. Funct. Mater., 2003, 13(10): 815–820.

    Article  Google Scholar 

  15. Yang, Y. S., Liu, J., Wan, M. X., Self-assembled conducting polypyrrole micro/nanotubes, Nanotechnology, 2002, 13(6): 771–773.

    Article  Google Scholar 

  16. Zhang, L. J., Wan, M. X., Synthesis and characterization of self-assembled polyaniline nanotubes doped with D-10-camphorsulfonic acid, Nanotechnology, 2002, 13(6): 750–755.

    Article  Google Scholar 

  17. Wei, Z. X., Wan, M. X., Hollow microspheres of polyaniline synthesized with an aniline emulsion template, Adv. Mater., 2002, 14(18): 1314–1318.

    Article  Google Scholar 

  18. Wan, M. X., Huang, K., Zhang, L. J. {etet al.}, Nanotubes of conducting polyaniline and polypyrrole, International Journal of NonlinearSciences and Numerical Simulation, 2002, 3(3–4): 465–468.

    Google Scholar 

  19. Fleischer, R. L., Price, P. B., Walker, R. M., Nuclear Tracks in Solids, Berkeley, CA: Univ. of California Press, 1975.

    Google Scholar 

  20. Almawiawi, D., Coombs, N., Moskovits, M., Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size, J. Appl. Phys., 1991, 70(8): 4421–4425.

    Article  Google Scholar 

  21. Foss, C. A., Hornyal, G. L., Stocher, J. A. etal., Optical properties of composite membranes containing arrays of nanoscopic gold cylinders, J. Phys. Chem., 1992, 96(19): 7497–7499.

    Article  Google Scholar 

  22. Foss, C. A., Hornyak, G. L., Stockert, J. A. etal., Template-synthesized nanoscopic gold particles—optical-spectra and the effects of particle-size and shape, J. Phys. Chem., 1994, 98(11): 2963–2971.

    Article  Google Scholar 

  23. Cai, Z., Martin, C. R., Electronically conductive polymer fibers with mesocopic diameters show enhanced electronic conductivities, J. Am. Chem. Soc., 1989, 111(11): 4138–4139.

    Article  Google Scholar 

  24. Parthasarathy, R. V., Martin, C. R., Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization, Nature, 1994, 369(6478): 298–301.

    Article  Google Scholar 

  25. Penner, R. M., Martin, C. R., Controlling the morphology of electronically conductive polymers, J. Electrochem. Soc., 1986, 133(10): 2206–2207.

    Article  Google Scholar 

  26. Burford, R. P., Tongtam, T., Conducting polymers with controlled fibrillar morphology, J. Mater. Sci., 1991, 26(12): 3264–3270.

    Article  Google Scholar 

  27. Fu, M. X., Zhu, Y. F., Tan, R. Q. etal., Aligned polythiophene micro- and nano-tubules, Adv. Mater., 2001, 13(24): 1874–1877.

    Article  Google Scholar 

  28. Cao, J., Sun, J. Z., Shi, G. Q. etal., Photovoltaic properties of polythiophene nano-tuble films, Materials Chemistry and Physics, 2003, 82(1): 44–48.

    Article  Google Scholar 

  29. Fu, M. X., Chen, F. E., Shi, G. Q. etal., Electrochemical fabrication of aligned microtubular heterjunctions of poly(p-phenlene) and polythiophene, J. Mater. Chem., 2002, 12(8): 2331–2333.

    Article  Google Scholar 

  30. Zhang, J. X., Shi, G. Q., Liu, C. etal., Electrochemical fabrication of polythiophene film coated metallic nanowire arrays, J. Mater. Sci., 2003, 38(11): 2423–2427.

    Article  Google Scholar 

  31. Zhang, J. X., Shi, G. Q., Chen, F. etal., Aligned polythiophene coated gold nanowires, Synth. Met., 2003, 135(1–3): 217–218.

    Article  Google Scholar 

  32. Martin, C. R., Van Dyke, L. S., Cai, Z. etal., Template-synthesis of organic microtubules, J. Am. Chem. Soc., 1990, 112(24): 8976–8977.

    Article  Google Scholar 

  33. Liang, W., Martin, C. R., Template-synthesized polyacetylene fribrils show enhanced supermolecular order, J. Am. Chem. Soc., 1990, 112(26): 9666–9668.

    Article  Google Scholar 

  34. Menon, V. P., Lei, J. T, Martin, C. R., Investigation of molecular and supermolecular structure in template-synthesized polypyrrole tubules and fibrils, Chem. Mater., 1996, 8(9): 2382–2390.

    Article  Google Scholar 

  35. Cepak, V. M., Martin, C. R., Preparation of polymeric micro- and nanostructures using a template-based deposition method, Chem. Mater., 1999, 11(5): 1363–1367.

    Article  Google Scholar 

  36. Piraux, L., Dubois, S., Duvail, J. L. etal., Fabrication and properties of organic and metal nanocylinders in nanoporous membranes, J. Mater. Res., 1999, 14(7): 3042–3050.

    Article  Google Scholar 

  37. Demoustier-Champagne, S., Stavaux, P. Y., Effect of electrolyte concentration and nature on the morphology and the electrical properties of electropolymerized polypyrrole nanotubules, Chem. Mater., 1999, 11(3): 829–834.

    Article  Google Scholar 

  38. Atchison, S. N., Burford, R. P., Darragh, T. A. etal., Morphology of high surface area polypyrrole structures, Polymer Int., 1991, 26: 261–266.

    Article  Google Scholar 

  39. Shi, G. Q., Jin, S., Xue, G. et al., A conducting polymer film stronger than aluminum, Science, 1995, 267(5200): 994–996.

    Article  Google Scholar 

  40. Shi, G. Q., Xue, G., Li, C. et al., Uniaxial oriented poly(p-phenylene) fibrils and films, Macromolecules, 1994, 27(13): 3678–3679.

    Article  Google Scholar 

  41. Shi, G. Q., Li, C., Liang, Y. Q., High-strength conducting polymers prepared by electrochemical polymerization in boron trifluoride diethyl etherate solution, Adv. Mater., 11(13): 1145–1146.

  42. Qu, L. T., Shi, G. Q., Crystalline oligopyrene nanowires with multicolored emission, Chem. Comm, 2004, 4(24): 2800–2801.

    Article  Google Scholar 

  43. He, Y. H., Yuan, J. Y., Shi, G. Q., Fabrication of gold nanocrystal-coated polypyrrole nanotubules, J. Mater. Chem., 2005, 15(8): 859–862.

    Article  Google Scholar 

  44. Barthet, C., Armes, S. P., Lascelles, S. F. et al., Synthesis and characterization of micro-sized polyaniline-coated polystyrene latexes, Langmuir, 1998, 14(8): 2032–2041.

    Article  Google Scholar 

  45. Okubo, M., Fujii, S., Minami, H., Production of electrically conductive, core/shell polystyrene/polyaniline composite particles by chemical oxidative seeded dispersion polymerization, Colloid Polym. Sci., 2001, 279(2): 139–145.

    Article  Google Scholar 

  46. Caruso, F., Hollow capsule processing through colloidal templating and self-assembly, Chem. Eur. J., 2000, 6(3): 413–419.

    Article  Google Scholar 

  47. Stejskal, J., Kratochvil, P., Armes, S. P. et al., Polyaniline dispersions: stabilization by colloidal silica particles, Macromolecules, 1996, 29(21): 6814–6819.

    Article  Google Scholar 

  48. Jun, J. B., Kim, J. W., Lee, J. W. et al., Spherical polarization body: Synthesis of monodisperse micron-sized polyaniline composite particles, Macromol. Rapid Comm., 2001, 22(12): 937–940.

    Article  Google Scholar 

  49. Marinakos, S. M., Shultz, D. A., Feldheim, D. L., Gold nanoparticles as templates for the synthesis of hollow nanometer-sized conductive polymer capsules, Adv. Mater., 1999, 11(1): 34–37.

    Article  Google Scholar 

  50. Cairns, D. B., Armes, S. P., Breme,r L. G. B., Synthesis and characterization of submicrometer-sized polypyrrole-polystyrene composite particles, Langmuir, 1999, 15(23): 8052–8058.

    Article  Google Scholar 

  51. Cairns, D. B., Armes, S. P., Chehimi, M. M. et al., X-ray photoelectron spectroscopy characterization of submicrometer-sized polypyrrole — Polystyrene composites, Langmuir, 1999, 15(23): 8059–8066.

    Article  Google Scholar 

  52. Khan, M. A., Armes, S. P., Synthesis and characterization of micrometer-sized poly(3,4 ethylenedioxythiophene)-coated polystyrene latexes, Langmuir, 1999, 15(10): 3469–3475.

    Article  Google Scholar 

  53. Hao, L. Y., Zhu, C. L., Chen, C. N. et al., Fabrication of silica core-conductive polymer polypyrrole shell composite particles and polypyrrole capsule on monodispersed silica templates, Synth. Met., 2003, 139(2): 391–396.

    Article  Google Scholar 

  54. Gangopadhyay, R., De, A., Conducting polymer nanocomposites: A brief overview, Chem. Mater., 2000, 12(3): 608–622.

    Article  Google Scholar 

  55. Park, M. K., Onishi, K., Locklin, J. et al., Self-assembly and characterization of polyaniline and sulfonated polystyrene multilayer-coated colloidal particles and hollow shells, Langmuir, 2003, 19(20): 8550–8554.

    Article  Google Scholar 

  56. Braun, P. V., Wiltzius, P., Microporous materials—Electrochemically grown photonic crystals, Nature, 1999, 402(6762): 603–604.

    Article  Google Scholar 

  57. Lee, Y. C., Kuo, T. J., Hsu, C. J. et al., Fabrication of 3D macroporous structures of II–VI and III–V semiconductors using electrochemical deposition, Langmuir, 2002, 18(25): 9942–9946.

    Article  Google Scholar 

  58. Sumida, T., Wada, Y., Kitamura, T. et al., Electrochemical preparation of macroporous polypyrrole films with regular arrays of interconnected spherical voids, Chem. Commun., 2000, 0(17): 1613–1614.

    Article  Google Scholar 

  59. Cassagneau, T., Caruso, F., Semiconducting polymer inverse opals prepared by electropolymerization, Adv. Mater., 2002, 14(1): 34–38.

    Article  Google Scholar 

  60. Wang, D. Y., Caruso, F., Fabrication of polyaniline inverse opals via templating ordered colloidal assemblies, Adv. Mater., 2001, 13(5): 350–353.

    Article  Google Scholar 

  61. Noll, J. D., Nicholson, M. A., Van Patten, P. G. et al., Template electropolymerization of polypyrrole nanostructures on highly ordered pyrolytic graphite stage and pit defects, J. Electrochem. Soc., 1998, 145(10): 3320–3328.

    Article  Google Scholar 

  62. Myrick, M. L., Noll, J. D., Nicholson, M. A., Modeling of growth morphology of underpotential electropolymerization of pyrrole on graphite, J. Electrochem. Soc., 1998, 145(1): 179–185.

    Article  Google Scholar 

  63. Hou, H. Q., Jun, Z., Reuning, A. et al., Poly(p-xylylene) nanotubes by coating and removal of ultrathin polymer template fibers, Macromolecules, 2002, 35(7): 2429–2431.

    Article  Google Scholar 

  64. Fan, J. H., Wan, M. X., Zhu, D. B. et al., Synthesis and properties of carbon nanotube-polypyrrole composites, Synth. Met., 1999, 102(1–3): 1266–1267.

    Article  Google Scholar 

  65. Chen, G. Z., Shaffer, M. S. P., Coleby, D. et al., Carbon nanotube and polypyrrole composites: Coating and doping, Adv. Mater., 2000, 12(7): 522–525.

    Article  Google Scholar 

  66. Downs, C., Nugent, J., Ajayan, P. M. et al., Efficient polymerization of aniline at carbon nanotube electrodes, Adv. Mater., 1999, 11(12): 1028–1031.

    Article  Google Scholar 

  67. Gao, M., Huang, S. M., Dai, L. M. et al., Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers, Angew. Chem. Int. Edit., 2000, 39(20): 3664–3667.

    Google Scholar 

  68. McConnell, G. A., Gast, A. P., Huang, J. S. et al., Disorder-order transition in soft sphere polymer micelles, Phys. Rev. Lett., 1993, 71(13): 2102–2105.

    Article  Google Scholar 

  69. Wei, Z. X., Zhang, L. J., Yu, M. et al., Self-assembling sub-micrometer-sized tube junctions and dendrites of conducting polymers, Adv. Mater., 2003, 15(16): 1382–1385.

    Article  Google Scholar 

  70. Wei, Z. X., Zhang, Z. M., Wan, M. X., Formation mechanism of self-assembled polyaniline micro/nanotubes, Langmuir, 2002, 18(3): 917–921.

    Article  Google Scholar 

  71. Huang, Z. M., Shi, G. Q., Zhang, J. X. et al., Template-free electrosynthesis of aligned poly(p-phenylene) microtubules, Chinese Science Bulletin, 2003, 48(5): 434–436.

    Article  Google Scholar 

  72. Jang, J., Yoon, H., Facile fabrication of polypyrrole nanotubes using reverse microemulsion polymerization, Chem. Commun., 2003, 3(6): 720–721.

    Article  Google Scholar 

  73. Qu, L. T., Shi, G. Q., Hollow microstructures of polypyrrole doped by poly(styrene sulfonic acid), Journal of Polymer Science: Part A: Polymer Chemistry, 2004, 42(13): 3170–3177.

    Article  Google Scholar 

  74. Qu, L. T., Shi, G. Q., Yuan, J. Y. et al., Preparation of polypyrrole microstructures by direct electrochemical oxidation of pyrrole in an aqueous solution of camphorsulfonic acid, J. Electroanal. Chem., 2004, 561(1–2): 149–156.

    Article  Google Scholar 

  75. Qu, L. T., Shi, G. Q., Chen, F. E. et al., Electrochemical growth of polypyrrole microcontainers, Macromolecules, 2003, 36(4): 1063–1067.

    Article  Google Scholar 

  76. Yuan, J. Y., Zhang, D. Q., Qu, L. T., Direct electrochemical generation of conducting polymer microcontainers on silicon substrate, Polym. Int., 2004, 53(12): 2125–2129.

    Article  Google Scholar 

  77. Liu, J., Wan, M. X., Synthesis, characterization and electrical properties of microtubules of polypyrrole synthesized by a template-free method, J. Mater. Chem., 2001, 11(2): 404–407.

    Article  Google Scholar 

  78. Mcconnell, G. A., Lin, M. Y., Gast, A. P., Long-range order in polymeric micelles under steady shear, Macromolecules, 1995, 28(20): 6754–6764.

    Article  Google Scholar 

  79. McConnell, G. A., Gast, A. P., Melting of ordered arrays and shape transitions in highly concentrated diblock copolymer solutions, Macromolecules, 1997, 30(3): 435–444.

    Article  Google Scholar 

  80. McConnell, G. A., Gast, A. P., Predicting disorder-order phase transitions in polymeric micelles, Phys. Rev. E, 1996, 54(5): 5447–5455.

    Article  Google Scholar 

  81. Jenekhe, S. A., Chen, X. L., Self-assembly of ordered microporous materials from rod-coil block copolymers, Science, 1999, 283(5400): 372–375.

    Article  Google Scholar 

  82. Bjornholm, T., Hassenkam, T., Greve, D. R. et al., Polythiophene nanowires, Adv. Mater., 1999, 11(14): 1218–1221.

    Article  Google Scholar 

  83. Kosonen, H., Ruokolainen, J., Knaapila, M. et al., Nanoscale conducting cylinders based on self-organization of hydrogen-bonded polyaniline supramolecules, Macromolecules, 2000, 33(23): 8671–8675.

    Article  Google Scholar 

  84. Holdcroft, S., Patterning p-Conjugated Polymers, Adv. Mater., 2001, 13(23): 1753–1765.

    Article  Google Scholar 

  85. Xia, Y. N., Whitesides, G. M., Soft Lithography, Angew. Chem. Int. Ed., 1998, 37(5): 550–575.

    Article  Google Scholar 

  86. Okazaki, S., Resolution limits of optical lithography, J. Vac. Sci. Technol. B, 1991, 9(6): 2829–2833.

    Article  Google Scholar 

  87. Jeong, H. J., Markle, D. A., Owen, G. et al., The future of optical lithography, Solid State Technol., 1994, 37(4): 39–47.

    Google Scholar 

  88. Levenson, M. D., Extending optical lithography to the gigabit era, Solid State Technol., 1995, 38(2): 57–66.

    Google Scholar 

  89. Geppert, L., Semiconductor lithography for the next millennium, IEEE Spectrum, 1996, 33(4): 33–38.

    Article  Google Scholar 

  90. Huber, T. E., Luo, L., Far-infrared propagation in metal wire microstructures, Appl. Phys. Lett., 1997, 70(19): 2502–2504.

    Article  Google Scholar 

  91. Hoyer, P., Baba, N., Masuda, H., Small quantum-sized cds particles assembled to form a regularly nanostructured porous film, Appl. Phys. Lett., 1995, 66(20): 2700–2702.

    Article  Google Scholar 

  92. Masuda, H., Fukuda, K., Ordered metal nanohole arrays made by a 2-stage replication of honeycomb structures of anodic alumina, Science, 1995, 268(5216): 1466–1468.

    Article  Google Scholar 

  93. Hoyer, P., Semiconductor nanotube formation by a two-stage template process, Adv. Mater., 1996, 8(10): 857–859.

    Article  Google Scholar 

  94. Lehmann, H. W., Widmer, R., Ebnoether, M. et al., Fabrication of submicron crossed square wave gratings by dry etching and thermoplastic replication techniques, J. Vac. Sci. Technol. B, 1983, 1(4): 1207–1210.

    Article  Google Scholar 

  95. Schlereth, K. H., Bötther, H., Embossed grating lead chalcogenide distributed-feedbaclasers, J. Vac. Sci. Technol. B, 1992, 10(1): 114–117.

    Article  Google Scholar 

  96. Emmelius, M., Pawlowski, G., Vollmann, H. W., Materials for optical data storage, Angew. Chem. Int. Ed., 1989, 28(11): 1445–1471.

    Google Scholar 

  97. Chou, S. Y., Krauss, P. R., Renstrom, P. J., Imprint of sub-25 nm vias and trenches in polymers, Appl. Phys. Lett., 1995, 67(21): 3114–3116.

    Article  Google Scholar 

  98. Chou, S. Y., Krauss, P. R., Renstrom, P. J., Imprint lithography with 25-nanometer resolution, Science, 1996, 272(5258): 85–87.

    Article  Google Scholar 

  99. Haverkorn, H. C., Rijsewijk, P. E., Legierse, J. et al., Manufacture of laservision video discs by a photopolymerization process, Philips Tech. Rev., 1982, 40: 287–297.

    Google Scholar 

  100. Kloosterboer, J. G., Lippits, G. J. M., Meinders, H. C., Photopolymerizable lacquers for laservision video discs, Philips Tech. Rev., 1982, 40:298–309.

    Google Scholar 

  101. Terris, B. D., Mamin, H. J., Best, M. E. et al., Nanoscale replication for scanning probe data storage, Appl. Phys. Lett., 1996, 69(27): 4262–4264.

    Article  Google Scholar 

  102. Rebhan, U., Endert, H., Zaal, G., Micromanufacturing benefits from excimer-laser development, Laser Focus World, 1994, 30(11): 91–96.

    Google Scholar 

  103. Weiss, S. A., Think small-lasers compete in micromachining, Photon Spectra, 1995, 29(10): 108–114.

    Google Scholar 

  104. Roberts, M. A., Rossier, J. S., Bercier, P. et al., UV laser machined polymer substrates for the development of microdiagnostic systems, Anal. Chem., 1997, 69(11): 2035–2042.

    Article  Google Scholar 

  105. Kim, D. Y., Tripathy, S. K., Li, L. et al., Laser-induced holographic surface-relief gratings on nonlinear-optical polymer-films, Appl. Phys. Lett., 1995, 66(10): 1166–1168.

    Article  Google Scholar 

  106. Mullenborn, M., Dirac, H., Petersen, J. W., Silicon nanostructures produced by laser direct etching, Appl. Phys. Lett., 1995, 66(22): 3001–3003.

    Article  Google Scholar 

  107. Kramer, N., Niesten, M., Schonenberger, C., Resistless high-resolution optical lithography on silicon, Appl. Phys. Lett., 1995, 67(20): 2989–2991.

    Article  Google Scholar 

  108. Döring, M., Ink-jet printing, Philips Tech. Rev., 1982, 40(7): 192–198.

    Google Scholar 

  109. Anczurowski, E., Oliver, J., Marchessault, R. H., New papers for new printers, Chem.Tech., 1986, 16(5): 304–310.

    Google Scholar 

  110. Blanchard, A. P., Kaiser, R. J., Hood, L. E., High-density oligonucleotide arrays, Biosens. Bioelectron., 1996, 11(6–7): 687–690.

    Article  Google Scholar 

  111. Lemmo, A. V., Fisher, J. T., Geysen, H. M. et al., Characterization of an inkjet chemical microdispenser for combinatorial library synthesis, Anal. Chem., 1997, 69(4): 543–551.

    Article  Google Scholar 

  112. Kumar, A., Whitesides, G. M., Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching, Appl. Phys. Lett., 1993, 63(14): 2002–2004.

    Article  Google Scholar 

  113. Xia, Y. N., Kim, E., Zhao, X. M. et al., Complex optical surfaces formed by replica molding against elastomeric masters, Science, 1996, 273(5273): 347–349.

    Article  Google Scholar 

  114. Zhao, X. M., Xia, Y. N., Whitesides, G. M., Fabrication of threedimensional micro-structures: Microtransfer molding, Adv. Mater., 1996, 8(10): 837–840.

    Article  Google Scholar 

  115. Kim, E., Xia, Y. N., Whitesides, G. M., Polymer microstructures formed by molding in capillaries, Nature, 1995, 376(6541): 581–584.

    Article  Google Scholar 

  116. Kim, E., Xia, Y. N., Zhao, X. M. et al., Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers, Adv. Mater., 1997, 9(8): 651–654.

    Google Scholar 

  117. Yuan, J. Y., Qu, L. T., Shi, G. Q. et al., Linear attangement of polypyrrole microcontainers, 2004, (8): 994–995.

  118. Qin, D., Xia, Y. N., Rogers, J. A., Jackman, R. J. et al., Microfabrication, microstructures and microsystems. Microsystem technology in chemistry and life science, Topics in Current Chemistry, 1997, 194: 1–20.

    Article  Google Scholar 

  119. Choi, S. J., Park, S. M., Electrochemical growth of nanosized conducting polymer wires on gold using molecular templates, Adv. Mater., 2000, 12(20): 1547–1549.

    Article  Google Scholar 

  120. Jérôme, C., Jérôme, R., Electrochemical synthesis of polypyrrole nanowires, Angew. Chem. Int. Ed., 1998, 37(18): 2488–2490.

    Article  Google Scholar 

  121. Huang, L. M., Wang, Z. B., Wang, H. T. et al., Polyaniline nanowires by electropolymerization from liquid crystalline phases, J. Mater. Chem., 2002, 12(2): 388–391.

    Article  Google Scholar 

  122. Goren, M., Qi, Z. G., Lennox, R. B., Selective templated growth of polypyrrole strands on lipid tubule edges, Chem. Mater., 2000, 12(5): 1222–1228.

    Article  Google Scholar 

  123. Shiratori, S. S., Mori, S., Ikezaki, K., Wire bonding over insulating substrates by electropolymerization of polypyrrole using a scanning micro-needle, Sensors and Actuators B, 1998, 49(1–2): 30–33.

    Article  Google Scholar 

  124. Kondo, T., Ishii, A., Munekata, H., Nanoscale polydiacetylene wire structures prepared by molecular beam deposition on semiconductor substrates, Physica. E, 1998, 2(1–4): 991–995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoquan Shi.

About this article

Cite this article

Lu, G., Chen, F., Wu, X. et al. Micro- and nano-structured conducting polymeric materials. Chin.Sci.Bull. 50, 1673–1682 (2005). https://doi.org/10.1360/982005-670

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1360/982005-670

Keywords

Navigation