Skip to main content
Log in

The complete mitochondrial genomes sequences of Asio flammeus and Asio otus and comparative analysis

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The complete mitochondrial genomes of Asio flammeus and Asio otus were sequenced and found to span 18858 bp and 18493 bp, respectively. It is surprising to find the former to be the largest among all avian mitochondrial genomes sequenced so far. The two genomes have very similar gene order with that of Gallus gallus, neither contains the pseudo control region, but both have a single extra base, namely Cytidine, at position 174 in ND3 gene. The control regions of Asio flammeus and Asio otus’ mitochondrial genomes span 3288 bp and 2926 bp respectively, which are the longest among vertebrates except for Myxine glutinosa and contribute to the large size of two genomes. The 3′ end of the control region of Asio flammeus and Asio otus contains many tandemly repeated sequences, which are highly similar to a putative control element, i.e. Mt5, and may form stable stem-loop secondary structures. Such repeated sequences probably play an important role in regulating transcription and replication of mitochondrial genome. Our results may provide important clues for uncovering the origin and evolution mechanisms of mitochondrion genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stoneking, M., Soodyall, H., Human evolution and the mitochondrial genome, Curr. Opin. Genet. Dev., 1996, 6(6): 731–736.

    Article  PubMed  CAS  Google Scholar 

  2. Zardoya, R., Meyer, A., The complete nucleotide sequence of the mitochondrial genome of the lungfish (Protopterus dolloi) supports its phylogenetic position as a close relative of land vertebrates, Genetics, 1996, 142: 1249–1263.

    PubMed  CAS  Google Scholar 

  3. Naylor, G. J., Brown, W. M., Amphioxus mitochondrial DNA, chordate phylogeny, and the limits of inference based on comparisons of sequences, Syst. Biol., 1998, 47: 61–76.

    Article  PubMed  CAS  Google Scholar 

  4. Rasmussen, A. S., Arnason, U., Phylogenetic studies of complete mitochondrial DNA molecules place cartilaginous fishes within the tree ofbony fishes, J. Mol. Evol., 1999, 48: 118–123.

    Article  PubMed  CAS  Google Scholar 

  5. Anderson, S., Bankier, A. T., Barrell, B. G. et al., Sequence and organization of the human mitochondrial genome, Nature, 1981, 290: 457–465.

    Article  PubMed  CAS  Google Scholar 

  6. Li, Q. W., Chen, Y. F., Enlarge the mitochondrial genome in bird, Zoological Research (in Chinese), 1996, 17(4): 376, 384,392.

    CAS  Google Scholar 

  7. Haring, E., Kruckenhauser, L., Gamauf, A. et al., The complete sequence of the mitochondrial genome of Buteo buteo (Aves, Accipitridae) indicates an early split in the phylogeny of raptors, Mol. Biol. Evol., 2001, 18(10): 1892–1904.

    PubMed  CAS  Google Scholar 

  8. Mindell, D. P., Sorenson, M. D., Dimcheff, D. E. et al., Interordinal relationships of birds and other reptiles based on whole mitochondrial genomes, Syst. Biol., 1999, 48 (1): 138–152.

    Article  PubMed  CAS  Google Scholar 

  9. Harrison, G. L., Mclenachan, P. A., Phillips, M. J. et al., Four new avian mitochondrial genomes help get to basic evolutionary questions in the Late Cretaceous, Mol. Biol. Evol., 2004, 21(6): 974–983.

    Article  PubMed  CAS  Google Scholar 

  10. Arnason, U., Gullberg, A., Widegren, B., The complete nucleotide sequence of the mitochondrial DNA of the fin whale, Balaenopteraphysalus, J. Mol. Evol., 1991, 33: 556–568.

    Article  PubMed  CAS  Google Scholar 

  11. Sorenson, M. D., Ast, J. C., Dimcheff, D. E. et al., Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates, Mol. Phylogenet. Evol., 1999, 12(2): 105–114.

    Article  PubMed  CAS  Google Scholar 

  12. Thompson, J. D., Gibson, T. J., Plewniak, F. et al., The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res., 1997, 24:4876–4882.

    Article  Google Scholar 

  13. Desjardins, P., Morais, R., Sequence and gene organization of the chicken mitochondrial genome, J. Mol. Biol., 1990, 212: 599–634.

    Article  PubMed  CAS  Google Scholar 

  14. Mindell, D. P., Sorenson, M. D., Dimcheff, D. E., Multiple independent origins of mitochondrial gene order in birds, Proc. Natl. Acad. Sci. USA, 1998, 95: 10693–10697.

    Article  PubMed  CAS  Google Scholar 

  15. Slack, K. E., Janke, A., Penny, D. et al., Two new avian mitochondrial genomes (penguin and goose) and a summary of birds and reptile mitogenomic features, Gene, 2003, 302: 43–52.

    Article  PubMed  CAS  Google Scholar 

  16. Mindell, D. P., Sorenson, M. D., Dimcheff, D. E., An extra nucleotide is not translated in mitochondrial ND3 of some birds and turtles, Mol. Biol. Evol., 1998, 15(11): 1568–1571.

    PubMed  CAS  Google Scholar 

  17. Brown, G. G., Gadaleta, G., Pepe, G. et al., Structural conservation and variation in the D-loop containing region of vertebrate mitochondrial DNA, J. Mol. Biol., 1986, 192: 503–511.

    Article  PubMed  CAS  Google Scholar 

  18. Saccone, C., Pesole, G., Sbisa, E., The main regulatory region of mammalian mitochondrial DNA: Structure-function model and evolutionary pattern, J. Mol. Evol., 1991, 33: 83–91.

    Article  PubMed  CAS  Google Scholar 

  19. Ruokonen, M., Kvist, L., Structure and evolution of the avian mitochondrial control region, Mol. Phylogenet. Evol., 2002, 23: 422–432.

    Article  PubMed  CAS  Google Scholar 

  20. Delarbre, C., Rasmussen, A. S., Arnason, U. et al., The complete mitochondrial genome of the hagfish Myxine glutinosa: Unique features of the control region, J. Mol. Evol., 2001, 53: 634–641.

    Article  PubMed  CAS  Google Scholar 

  21. Bensch, S., Harlid, A., Mitochondrial genomic rearrangements in songbirds, Mol. Biol. Evol., 2000, 17(1): 107–113.

    PubMed  CAS  Google Scholar 

  22. Haddrath, O., Baker, A. J., Complete mitochondrial DNA genome sequences of extinct birds: Ratite phylogenetics and the vicariance biogeography hypothesis, Proc. R. Soc. Lond. B., 2001, 268: 939–945.

    Article  CAS  Google Scholar 

  23. Nishibori, M., Hayashi, T., Tsudzuki, M. et al., Complete sequence of the Japanese quail (Coturnix japonica) mitochondrial genome and its genetic relationship with related species, Anim. Genet., 2001, 32(6): 380–385.

    Article  PubMed  CAS  Google Scholar 

  24. Ojala, D., Montoya, J., Attardi, G., tRNA punctuation model of RNA processing in human mitochondria, Nature, 1981, 290: 470–474.

    Article  PubMed  CAS  Google Scholar 

  25. Crick, F. H., Codon-anticodon pairing: The Wobble Hypothesis, J. Mol. Biol., 1966, 19: 548–555.

    Article  PubMed  CAS  Google Scholar 

  26. Chen, W. C., Chen, Z. H., Wang, Z. Q. et al., Symmetrial analysis of the motochondrial and genomic codes, Acta Biophysica Sinica (in Chinese), 2002, 18: 87–94.

    CAS  Google Scholar 

  27. Moritz, C., Dowling, T. E., Brown, W. M., Evolution of animal mitochondrial DNA: Relevance for population biology and systematics, Ann. Rev. Ecol. Syst., 1987, 18: 269–292.

    Article  Google Scholar 

  28. Buroker, N. E., Brown, J. R., Gilbert, T. A. et al., Length heteroplasmy of sturgeon mitochondrial DNA: An illegitimate elongation model, Genetics, 1990, 124: 157–163.

    PubMed  CAS  Google Scholar 

  29. Faber, J. E., Stepien, C. A., Tandemly repeated sequences in the mitochondrial DNA control region and phylogeography of the pike-perches Stizostedion, Mol. Phylogenet. Evol., 1998, 10: 310–322.

    Article  PubMed  CAS  Google Scholar 

  30. Ohno, K., Tanaka, M., Suzuki, H. et al., Identification of a possible control element, Mt5, in the major noncoding region of mitochondrial DNA by intraspecific nucleotide conservation, Biochem. Int., 1991, 24(2): 263–271.

    PubMed  CAS  Google Scholar 

  31. Kumar, S., Suzuki, H., Onoue, S. et al., Rat mitochondrial mtDNA binding proteins to inter-specifically conserved sequences in the displacement loop region of vertebrate mtDNA, Biochem. Mol. Biol. Int., 1995, 36(5): 973–981.

    PubMed  CAS  Google Scholar 

  32. Nesbo, C. L., Arab, M. O., Jakobsen, K. S., Heteroplasmy, length and sequence variation in the mtDNA control region of three percid fish species (Perca fluviatilis, Acerina cernua, Stizostedion lucioperca), Genetics, 1998, 148: 1907–1919.

    PubMed  CAS  Google Scholar 

  33. Delport, W., Ferguson, J. W., Bloomer, P., Characterization and evolution of the mitochondrial DNA control region in Hornbills (Bucerotifoormes), J. Mol. Evol., 2002, 54: 794–806.

    Article  PubMed  CAS  Google Scholar 

  34. Randi, E., Lucchini, V., Organization and evolution of the mitochondrial DNA control region in the Avian Genus Alectoris, J. Mol. Evol., 1998, 47:449–462.

    Article  PubMed  CAS  Google Scholar 

  35. Fumagalli, L., Taberlet, P., Favre, L. et al., Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews, Mol. Biol. Evol., 1996, 13(1): 31–46.

    PubMed  CAS  Google Scholar 

  36. Crochet, P. A., Desmarais, E., Slow rate of evolution in the mitochondrial control region of gulls (Aves: Laridae), Mol. Biol. Evol., 2000, 17(12): 1797–1806.

    PubMed  CAS  Google Scholar 

  37. Sbisa, E., Tanzariello, F., Reyes, A. et al., Mammalian mitochondrial D-loop region structural analysis: Identification of new conserved sequences and their functional and evolutionary implications, Gene, 1997, 205: 125–140.

    Article  PubMed  CAS  Google Scholar 

  38. Casane, D., Dennebouy, N., Rochambeau, H. et al., Nonneutral evolution of tandem repeats in the mitochondrial DNA control region of Lagomorphs, Mol. Biol. Evol., 1997, 14(8): 779–789.

    PubMed  CAS  Google Scholar 

  39. Ravago, R. G., Monje, V. D., Juinio-Menez, M. A., Length and sequence variability in mitochondrial control region of the Milkfish, Chanos chanos, Mar. Biotechnol., 2002, 4: 40–50.

    Article  PubMed  CAS  Google Scholar 

  40. Douzery, E., Randi, E., The mitochondrial control region of Cervidae: Evolutionary patterns and phylogenetic content, Mol. Biol. Evol., 1997, 14(11): 1154–1166.

    PubMed  CAS  Google Scholar 

  41. Margulis, L., Origin of Eukaryotic Cells, New Haven: Yale University Press, 1970.

    Google Scholar 

  42. Andersson, S. G., Zomorodipour, A., Andersson, J. O. et al., The genome sequence of Rickettsia prowazekii and the origin of mitochondria, Nature, 1998, 396(6707): 133–140.

    Article  PubMed  CAS  Google Scholar 

  43. Cavalier-Smith, T., The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies, Ann. N. Y. Acad. Sci., 1987, 503:55–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingwei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Ma, F., Xiao, B. et al. The complete mitochondrial genomes sequences of Asio flammeus and Asio otus and comparative analysis. Sci. China Ser. C.-Life Sci. 47, 510–520 (2004). https://doi.org/10.1360/04yc0117

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1360/04yc0117

Keywords

Navigation