Skip to main content
Log in

Liquid chromatography-electrochemical detection for studying the effects of tetrahydrobiopterin on monoamine neurotransmitters in rat striatum

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Tetrahydrobiopterin (BH4) is an essential co-factor in the biosynthesis of monoamine neurotransmitters. A nano-Pt/Pd modified electrode as the electrochemical detector (ED) for high-performance liquid chromatography (HPLC) coupled with microdialysis sampling, is used to explore the effect of administration of BH4 on the monoamine neurotransmitters in the rat striatum. The researches demonstrate that the contents of dopamine (DA), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) increase significantly with the administration of BH4. The pharmaceutical kinetics is carried out to research into the time course of BH4 effect on the concentration of monoamine neurotransmitters in rat striatum, which provides reliable data for pathology and pharmacology research on neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almas, B., Toska, K.,, Teigen, K. et al., A kinetic and conformational study on the interaction of tetrahydropterines with tyrosine hydroxylase, Biochemistry, 2000, 39: 13676–13686.

    Article  CAS  Google Scholar 

  2. Kaneko, Y. S., Morj, K., Nakashima, A. et al., Determination of tetrahydrobiopterin in murine locus coeruleus by HPLC with fluorescence detection, Brain Research Protocols, 2001, 8: 25–31.

    Article  CAS  Google Scholar 

  3. Liang, L. P., Kaufman, S., The regulation of dopamine release from striatum slices by tetrahydrobiopterin and L-arginine-arginine-derived nitric oxide, Brain Research, 1998, 800: 181–186.

    Article  CAS  Google Scholar 

  4. Garthwaite, J., Glutamate, Nitric oxide and cell-cell signaling in the nervous system, Trends Neurosci, 1991, 14: 60–67.

    Article  CAS  Google Scholar 

  5. Snyder, S. H., Nitric oxide: First in a new class of neurotransmitters, Science, 1992, 257: 494–496.

    Article  CAS  Google Scholar 

  6. Lovenberg, W., Jequier, E., Sjoerdsma, A. et al., Tryptophan hydroxylation: Measurement in pineal gland, brainstem, and carcinoid tumor, Science, 1967, 155: 217–219.

    Article  CAS  Google Scholar 

  7. Fiege, B., Ballhausen, D., Kierat, L. et al., Plasma tetrahydrobiopterin and its pharmacokinetic following oral administration, Molecular Genetics and Metabolism, 2004, 81: 45–51.

    Article  CAS  Google Scholar 

  8. Andersson, D. N., Abousaleh, M. T., Collins, J. et al., Pterin metabolism in depression—An extension of the amine hypothesis and possible marker of response to ECT, Psychol. Med., 1992, 22: 863–869.

    Google Scholar 

  9. Barford, P. A., Blair, J. A., Eggar, C. et al., Tetrahydrobiopterin metabolism in the temporal lobe of patients dying with senile dementia of Alzheimer type, J. Neurol. Neurosurg. Psychiatry, 1984, 47: 736–738.

    Article  CAS  Google Scholar 

  10. Becerik, I., Suzer, S., Kadirgan, F., Platinum-palladium loaded polypyrrole film electrodes for the electrooxidation of D-glucose in neutral media, Journal of Electroanalytical Chemistry, 1999, 476: 171–176.

    Article  CAS  Google Scholar 

  11. Yashima, M., Falk, L. K., Palmqvist, A. E. et al., Structure and catalytic properties of nanosized alumina supported platinum and palladium particles synthesized by reaction in microemulsion, Journal of Colloid and Interface Science, 2003, 268: 348–356.

    Article  CAS  Google Scholar 

  12. Solla-Gullon, J., Rodes, A., Montiel, V. et al., Electrochemical characterization of platinum-palladium nanoparticles prepared in a water-in-oil microemulsion, Journal of Electroanalytical Chemistry, 2003, 554-555: 273–284.

    Article  CAS  Google Scholar 

  13. Bao, X. M., Shu, S. Y., The Stereotaxic Altas of the Rat Brain, Beijing: First Ren Min Health Press, 1991, 28.

    Google Scholar 

  14. Zhang, W., Cao, X. N., Xian, Y. Z. et al., New microdialy-sis-electrochemical device for simultaneous determination of ascorbic acid and 5-hydroxyindole-3-acetic acid in rat striatum, Anal. Chim. Acta, 2002, 458: 337–344.

    Article  CAS  Google Scholar 

  15. Wang, J., Pamidi, P. V., Cepria, G., Electrocatalysis and am-perometric detection of aliphatic aldehydes at platinum-palladium alloy coated glassy carbon electrode, Anal. Chim. Acta, 1996, 330: 151–158.

    Article  CAS  Google Scholar 

  16. Levine, R. A., Miller, L. P., Lovenberg, W., Tetrahydrobiopterin in striatum: Localization in dopamine nerve terminals and role in catecholamine synthesis, Science, 1981, 214: 919–921.

    Article  CAS  Google Scholar 

  17. Tsukada, H., Lindner, K. J., Hartvig, P. et al., Effect of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin on the extracellular levels of dopamine and serotonin in the rat striatum: a microdialysis study with tyrosine or tryptophan infusion, Brain Research, 1994, 635: 59–67.

    Article  CAS  Google Scholar 

  18. Mataga, N., Imamura, K., Watanabe, Y., 6R-tetrahydrobioterin perfusion enhances dopamine, serotonin, and glutamate outputs in dialysate from rat striatum and frontal cortex, Brain Research, 1991, 551: 64–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Litong Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Zhu, W., Xu, H. et al. Liquid chromatography-electrochemical detection for studying the effects of tetrahydrobiopterin on monoamine neurotransmitters in rat striatum. Sc. China Ser. B-Chem. 48, 368–375 (2005). https://doi.org/10.1360/04yb0133

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/04yb0133

Keywords

Navigation