Skip to main content
Log in

Correlated intermolecular interaction components from asymptotically corrected Kohn-Sham orbitals

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The symmetry-adapted perturbation theory (SAPT) that has the ability in decomposition of the total interaction energy into physically meaningful components is used to provide a more fundamental understanding of intermolecular forces. This work was motivated by the difficulty of standard SAPT in computing the intermolecular interactions for large energetic dimer systems. SAPT based on Kohn-Sham orbitals (SAPT(DFT)) proves computationally efficient for these large systems, but has been shown to perform poorly for interaction energy components. The deficiencies of SAPT(DFT) result from wrong asymptotical behaviors of commonly used exchange-correlation potentials. To remove the deficiencies, two asymptotic corrections by means of van Leeuwen and Baerends (LB) model potential and Fermi-Amaldi (FA) type potential were applied into three small test systems comprising He2, HF2 and (N2)2 and a set of larger nitramide dimers at several separations. The results showed that when utilizing newly developed frequency-dependent density susceptibilities (FDDS) technique for computing dispersion energy, the FA asymptotic correction is very effective to circumvent these deficiencies in SAPT(DFT) and yields a good accuracy over the LB correction. The FA corrected SAPT(DFT) approach is capable of correctly predicting all the quantitative trends in binding energies for all test cases and substantially reduces computational cost as compared with the standard SAPT calculations. The successful application of the approach to nitramide dimer demonstrates that it potentially provides a good means to calculate accurately intermolecular forces in larger system such as energetic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao, H. M., Ju, X. H., Intermolecular Interactions in Energietic Systems (in Chinese), Beijing: Science Press, 2003.

    Google Scholar 

  2. Ju, X. H., Xiao, H. M., Theoretical study on intermolecular interscitons and thermodynamic properties of nitraoamine dimers, Chin. J. Chem., 2002, 20: 227–234.

    CAS  Google Scholar 

  3. Ju, X. H., Xiao, H. M., Xia, Q. Y., A DFT investigation of 1,1-diamino-2,2-dinitroethylene dimers and crystal, J. Chem. Phys., 2003, 119: 10247–10255.

    Article  CAS  Google Scholar 

  4. Jeziorski, B., Moszynski, R., Szalweicz, K., Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes, Chem. Rev., 1994, 94: 1887–1930.

    Article  CAS  Google Scholar 

  5. Szalewicz, K., Jeziorski, B., Symmetry-adapted perturbation theory of intermolecular Interactions, Molecular Interactions — From van der Waals to Strongly Bound Complexes (ed. Scheiner, S.), New York: John Wiley & Sons, 1997, 3–43.

    Google Scholar 

  6. Rybak, S., Szalewicz, K. J., Many-body symmetry-adapted perturbation theory of intermolecular interactions-H2O and HF dimers, Chem. Phys., 1991, 95: 6576–6601.

    CAS  Google Scholar 

  7. Moszynski, R., Jeziorski, B., Ratkiewicz, A. et al., Many-body perturbation theory of electrostatic interactions between molecules: comparison with full configuration interaction for four- electron dimers, J. Chem. Phys., 1993, 99: 8856–8869.

    Article  Google Scholar 

  8. Mosznski, R., Jeziorski, B., Rybak, S. et al., Many-body theory of exchange effects in intermolecular interactions—density matrix approach and applications to He-F-, He-HF, H2-HF, and Ar-H2 dimers, J. Chem. Phys., 1994, 100: 5080–5092.

    Article  Google Scholar 

  9. Williams, H. L., Chabalowski, C. F., Using Kohn-Sham orbitals in symmetry-adapted perturbation theory to investigate intermolecular interactions, J. Phys. Chem. A, 2001, 105: 646–659.

    Article  CAS  Google Scholar 

  10. Jones, R. O., Gunnarsson, O., The density functional formalism, its applications and prospects, Rev. Mod. Phys., 1989, 61: 689–746.

    Article  CAS  Google Scholar 

  11. Bolhuis, P. G., Chandler, D., Dellago, C. et al., Transition path sampling: throwing ropes over rough mountain passes, in the dark, Annu, Rev. Phys. Chem., 2002, 53: 291–318.

    Article  CAS  Google Scholar 

  12. Boero, M., Parrinello, M., Terakura, K. et al., Car-Parrinello study of Ziegler-Natta heterogeneous catalysis: stability and destabiliza- tion problems of the active site models, Mol. Phys., 2002, 100: 2935–2940.

    Article  CAS  Google Scholar 

  13. Kristyan, S., Pulay, P., Can (semi)local density functional theories account for the London dispersion forces? Chem. Phys. Lett., 1994,229: 175–180.

    Article  CAS  Google Scholar 

  14. Perez-Jorda, J. Becke, A. D., A density-functional study of van der Waals forces: rare gas diatomics, Chem. Phys. Lett., 1995, 233: 134–137.

    Article  CAS  Google Scholar 

  15. Perez-Jorda, J., San-Fabiaan, E., Perez-Jimenez, A., Density-functional study of van der Waals forces on rare-gas diatomics: Hartree-Fock exchange, J. Chem. Phys., 1999, 110: 1916–1920.

    Article  CAS  Google Scholar 

  16. Meijer, E. J., Sprik, M., A density-functional study of the intermolecular interactions of benzene, J. Chem. Phys., 1996, 105: 8684–8689.

    Article  CAS  Google Scholar 

  17. Sponer, J., Leszezynski, J., Hobza, P. J., Hydrogen bonding and stacking of DNA bases: a review of quantum-chemical ab initio studies, Biomol. Struct. Dyn., 1996, 14: 117–135.

    CAS  Google Scholar 

  18. Wu, X., Vargas, M. C, Nayak, S. et al., Towards extending the applicability of density functional theory to weakly bound systems, J. Chem. Phys., 2001, 115: 8748–8757.

    Article  CAS  Google Scholar 

  19. Rydberg, H., Jacobson, N., Hyldgaard, P. et al. Long- and medium-ranged nonlocal correlations in density functional theory, Surf. Sci., 2003, 532-535: 606–610.

    Article  CAS  Google Scholar 

  20. Hult, E., Andersson, Y., Lundqvist, B. I., et al., Density functional for van der Waals forces at surfaces, Phys. Rev. Lett., 1996, 77: 2029–2032.

    Article  CAS  Google Scholar 

  21. Hult, E., Rydberg, H., Lundqvist, B. I. et al., Unified treatment of asymptotic van der Waals forces, Phys. Rev., 1999, B59: 4708–4713.

    Google Scholar 

  22. Andersson, Y., Langreth, D. D., Lundqvist, D. C., van der Waals interactions in density-functional theory, Phys. Rev. Lett., 1996, 76: 102–105.

    Article  CAS  Google Scholar 

  23. Zimmerli, U., Parinello, M., Koumoutsakos, P. J., Dispersion corrections to density functionals for water aromatic interactions, J. Chem. Phys., 2004, 120: 2693–2699.

    Article  CAS  Google Scholar 

  24. Misquitta, A. J., Jeziorski, B., Szalewicz, K., Dispersion energy from density-functional theory description of monomers, Phys. Rev. Lett, 2003, 91: 033201–033204.

    Article  Google Scholar 

  25. Casida, M. E., Casida, K. C., Salahub, D. R., Excited-state potential energy curves from time-dependent density-functional theory: A cross section of formaldehyde's 1A1 manifold, Int. J. Quantum Chem., 1998,70: 933–941.

    Article  CAS  Google Scholar 

  26. Van Gisbergen, S. J. A., Kootstra, F., Schipper, P. R. T. et al., Density-functional-theory response-property calculations with accurate exchange-correlation potentials, Phys. Rev, 1998, A57: 2556–2571.

    Google Scholar 

  27. Tozer, D. J., Handy, N. C., Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities, J. Chem. Phys., 1998,109: 10180–10189.

    Article  CAS  Google Scholar 

  28. Allen, M. J., Tozer, D. J., Kohn-Sham calculations using hybrid exchange-correlation functionals with asymptotically corrected potentials, J. Chem. Phys., 2000, 113: 5185–5192.

    Article  CAS  Google Scholar 

  29. Tozer, D. J., The asymptotic exchange potential in Kohn-Sham theory, J. Chem. Phys., 2000, 112: 3507–3515.

    Article  CAS  Google Scholar 

  30. McDowell, S. A. C., Amos, R. D., Handy, N. C., Molecular Polarisabilities —A comparison of density functional theory with standard ab initio methods, Chem. Phys. Lett., 1995, 235: 1–4

    Article  CAS  Google Scholar 

  31. Sadlej, A. J., Long range induction and dispersion interactions between Hartree-Fock subsystems, Mol. Phys., 1980, 39: 1249–1264.

    Article  CAS  Google Scholar 

  32. Chalasinski, G., Szczesniak, M. M., Origins of structure and energetics of van der Waals clusters from ab initio calculations, Chem. Rev., 1994, 94: 1723–1765.

    Article  CAS  Google Scholar 

  33. Gutowski, M., Piela, L., Interpretation of the Hartree-Fock interaction energy between closed-shell systems, Mol. Phys., 1988, 64: 337–355.

    Article  CAS  Google Scholar 

  34. Gutowski, M., Olszewski, K., Piela, L., Interpretation of the hydrogen bond energy at the Hartree-Fock level for pairs of the HF, H2O and NH3 molecules, J. Phys. Chem., 1990, 94: 5710–5714.

    Article  Google Scholar 

  35. Jeziorska, M., Jeziorski, B., Cizek, J., Direct calculation of the Hartree-Fock interaction energy via exchange-perturbation expansion: The He-He interaction, Int. J. Quantum Chem., 1987, 32, 149–164.

    Article  CAS  Google Scholar 

  36. Turcks, G W., Salter, E. A., Sosa, C. et al. Theory and implementation of the MBPT Density Matrix: An application to one-electron properties, Chem. Phys. Lett., 1988, 147: 359–366.

    Article  Google Scholar 

  37. Misquitta, A. J., Szalewicz, K., Intermolecular forces from asymptotically corrected density functional description of monomers, Chem. Phys. Lett., 2002, 357: 301–306.

    Article  CAS  Google Scholar 

  38. Hebelmann, A., Jansen, G., First-order intermolecular interaction energies from Kohn-Sham orbitals, Chem. Phys. Lett., 2002, 357: 464–470.

    Article  Google Scholar 

  39. Perdew, J. P., Parr, M., Levy, R. G. et al., Density-functional theory for fractional particle number: derivative discontinuities of the energy, Phys. Rev. Lett., 1982, 49: 1691–1694.

    Article  CAS  Google Scholar 

  40. Perdew, J. P., Burke, K., Comparison shopping for a gradient-corrected density functional, Int. J. Quantum Chem., 1996, 57: 309–319.

    Article  CAS  Google Scholar 

  41. Tozer, D. J., Handy, N. C., The development of new exchange- correlation functionals, J. Chem. Phys., 1998, 108: 2545–2555.

    Article  CAS  Google Scholar 

  42. van Leeuwen, R., Baerends, E. J., Exchange-correlation potential with correct asymptotic behavior, Phys. Rev., 1994, A49: 2421–2431.

    Google Scholar 

  43. Gruning, M. Gritsenko, O. V., van Gisbergen, S. J. A. et al., Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region, J. Chem. Phys., 2001, 114: 652–660.

    Article  CAS  Google Scholar 

  44. Amos, R. D., Alberts, I. L., Andrews, J. S. et al., CADPAC: The Cambridge Analytic Derivatives Package Issue 6, Cambridge, 1995.

  45. Jeziorski, B., Moszynski, R., Ratkiewiczm, A. et al., SAPT: A Program for Many-Body Symmetry-Adapted Perturbation Theory Calculations of Intermolecular Interaction Energies, Methods and Techniques in Computational Chemistry: METECC-94, vol B (ed. Clementi, E.), Cagliari: STEF, 1993, 79.

    Google Scholar 

  46. Frisch, M. J., Trucks, G W., Schlegel, H. B. et al., Gaussian 94. Pittsburgh: Gaussian Inc, 1995.

    Google Scholar 

  47. Song, H. J., Xiao, H. M., Dong, H. S. et al., Ab initio calculation of intermolecular dispersion energy and induction energy of nitramide dimer, Chin. J. Chem., 2004, 22: 1377–1381.

    CAS  Google Scholar 

  48. Burcl, B., Chalasinski, G., Bukowski, R. et al., On the role of bond functions in interaction energy calculations: Ar-HCl, Ar--H2O, (HF)2, J. Chem. Phys., 1995, 103: 1498–1507.

    Article  CAS  Google Scholar 

  49. Boys, S. F., Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies, some procedures with reduced errors, Mol. Phys., 1970, 19: 553–559.

    Article  CAS  Google Scholar 

  50. Williams, H. L., Mas, E. M., Szalewicz, K. et al., On the effectiveness of monomer-, dimer-, and bond-centered basis functions in calculations of intermolecular interaction energies, J. Chem. Phys., 1995, 103: 7374–7391.

    Article  CAS  Google Scholar 

  51. van Mourik, T., van Lenthe, J. H.,Benchmark full configuration interaction calculations on the helium dimer, J. Chem. Phys., 1995, 102: 7479–7483.

    Article  Google Scholar 

  52. Korona, T., Williams, H. L., Bukowski, R. et al., Helium dimer potential from symmetry-adapted perturbation theory calculations using large Gaussian geminal and orbital basis sets, J. Chem. Phys., 1997, 106: 5109–5122.

    Article  CAS  Google Scholar 

  53. Anderson, J. B., Traynor, C. A., Boghosian, B. M., An exact quantum Monte Carlo calculation of the helium-helium intermolecular potential, J. Chem. Phys., 1993, 99: 345–351.

    Article  CAS  Google Scholar 

  54. Aziz, R. A., McCourt, F. R. W., Wong, C. C. K., Anew determination of the ground state interatomic potential for He2, Mol. Phys., 1987, 61: 1487–1511.

    Article  CAS  Google Scholar 

  55. Feltgen, R., Kirst, H., Kohler, K. A. et al., Unique determination of the He2 ground state potential from experiment by use of a reliable potential model, J. Chem. Phys., 1982, 76: 2360–2378.

    Article  CAS  Google Scholar 

  56. Frisch, M. J., DelBene, J. E., Schaefer III, H. F., Extensive theoretical studies of the hydrogen-bonded complexes (H2O)2, (H2O)2H +, (HF)2, (HF)2H +, F2H-, and (NH3)2, J. Chem. Phys., 1986, 84: 2279–2289.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajie Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, H., Xiao, H. & Dong, H. Correlated intermolecular interaction components from asymptotically corrected Kohn-Sham orbitals. Sc. China Ser. B-Chem. 47, 466–479 (2004). https://doi.org/10.1360/04yb0078

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/04yb0078

Keywords

Navigation