Skip to main content
Log in

Advances in catalytic removal of NOx under lean-burn conditions

  • Reviews
  • Published:
Chinese Science Bulletin

Abstract

The catalytic removal of NOx under lean conditions is one of the most important targets in catalysis research. The activities of metal oxides, zeolite-based catalysts and noble metal catalysts together with the factors are influencing the selective reduction of NOx with hydrocarbons are reviewed. The reaction mechanisms for the three types of catalysts are briefly discussed. Recent progress in combined catalyst and NOx storage reduction catalysts is also introduced. Finally, future research directions are forecasted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Obuchi, A., Kaneko, I., Oi, J. et al., A practical scale evaluation of catalysts for the selective reduction of NOx with organic substances using a diesel exhaust, Appl. Catal. B, 1998, 15(1-2): 37–47.

    Article  Google Scholar 

  2. Kašpar, J., Fornasiero, P., Hickey, N., Automotive catalytic converts: current status and some perspectives, Catal. Today, 2003, 77(4): 419–449.

    Article  Google Scholar 

  3. Koltsakis, G. C., Stamatelos, A. M., Catalytic automotive exhaust aftertreatment, Prog. Energy Combustion Sci., 1997, 23(1): 1–39.

    Article  Google Scholar 

  4. Wang, J. X., Fu, L. X., Li, W. B., Removal of pollutant contained in exhaust and catalytic converter (in Chinese), Beijing: Chemical Engineering Press, 2000, 167–169.

    Google Scholar 

  5. Matsumoto, S., Catalytic reduction of nitrogen oxides in automotive exhaust containing excess oxygen by NOx storage-reduction catalyst, Cattech, 2000, 4 (2): 102–109.

    Article  Google Scholar 

  6. Akama, H., Matsushita, K., Recent lean NOx catalyst technologies for automobile exhaust control, Catal. Surv. Jpn., 1999, 3(2): 139–146.

    Article  Google Scholar 

  7. Bell, A. T., Experimental and theoretical studies of NO decomposition and reduction over metal exchanged ZSM-5, Catal. Today, 1997, 38(2): 151–156.

    Article  Google Scholar 

  8. Tofan, C., Klvana, D., Kirchnerova, J., Decomposition of nitric oxide over perovskite oxide catalysts: effect of CO2, H2O and CH4, Appl. Catal. B, 2002, 36(4): 311–323.

    Article  Google Scholar 

  9. Liu, Z., Hao, J., Fu, L. et al., Study of Ag/La0.6Ce0.4CoO3 catalysts for direct decomposition and reduction of nitrogen oxides with propene in the presence of oxygen, Appl. Catal. B, 2003, 44(4): 355–370.

    Article  Google Scholar 

  10. Fritz, A., Pitchon, V., The current status of research on automotive lean NOx catalysis, Appl. Catal. B, 1997, 13(1): 1–25.

    Article  Google Scholar 

  11. Iwamoto, M., Yahiro, H., Shundo, S. et al., Influence of sulfur dioxide on catalytic removal of nitric oxide over copper ion-exchanged ZSM-5 zeolite, Appl. Catal., 1991, 69(1): 15–19.

    Article  Google Scholar 

  12. Nova, I., Lietti, L., Casagrande, L. et al., Characterization and reactivity of TiO2-supported MoO3 De-NOx SCR catalysts, Appl. Catal. B, 1998, 17(3): 245–254.

    Article  Google Scholar 

  13. Long, R. Q., Yang, R. T., Selective catalytic reduction of NO with ammonia over V2O5 doped TiO2 pillared clay catalysts, Appl. Catal. B, 2000, 24(1): 13–21.

    Article  Google Scholar 

  14. Qi, G., Yang, R. T., Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania, Appl. Catal. B, 2003, 44(3): 217–225.

    Article  Google Scholar 

  15. Burch, R., Coleman, M. D., An investigation of the NO/H2/O2 reaction on noble-metal catalysts at low temperatures under lean-burn conditions, Appl. Catal. B, 1999, 23(2-3): 115–121.

    Article  Google Scholar 

  16. Costa, C. N., Stathopoulos, V. N., Belessi, V. C. et al., An investigation of the NO/H2/O2 (Lean-deNOx) reaction on a highly active and selective Pt/La0.5Ce0.5MnO3 catalyst, J. Catal., 2001, 197(2): 350–364.

    Article  Google Scholar 

  17. Macleod, N., Lambert, R. M., In situ ammonia generation as a strategy for catalytic NOx reduction under oxygen rich conditions, Chem. Commun., 2003: 1300–1301.

  18. Macleod, N., Lambert, R. M., An in situ DRIFTS study of efficient lean NOx reduction with H2+CO over Pd/Al2O3: the key role of transient NCO formation in the subsequent generation of ammonia, Appl. Catal. B, 2003, 46(3): 483–495.

    Article  Google Scholar 

  19. Shangguan, W. F., Teraoka, Y., Kagawa, S., Simultaneous catalytic removal of NOx and diesel soot particulates over ternary AB2O4 spinel-type oxides, Appl. Catal. B, 1996, 8(2): 217–227.

    Article  Google Scholar 

  20. Hong, S. S., Lee, G. D., Simultaneous removal of NO and carbon particulates over lanthanoid perovskite-type catalysts, Catal. Today, 2000, 63(2-4): 397–404.

    Article  Google Scholar 

  21. Liu, Z., Hao, Z., Guo, Y. et al., Simultaneous catalytic removal of NOx and diesel soot particulates over perovskite-type oxides and supported Ag catalysts, J. Environ. Sci., 2002, 14(3): 289–295.

    Google Scholar 

  22. Held, W., Konig, T., Richter, T. et al., Catalytic NOx reduction in net oxidizing exhaust gas, SAE Transactions, 1990, 99: 209–216.

    Google Scholar 

  23. Auroux, A., Sprinceana, D., Gervasini, A., Support effects on de-NOx catalytic properties of supported tin oxides, J. Catal., 2000, 195(1): 140–150.

    Article  Google Scholar 

  24. Hickey, N., Fornasiero, P., Kašpar, J. et al., Improvement of SOxresistance of silver lean-deNOx catalysts by supporting on CeO2containingzirconia, J. Catal., 2002, 209(1): 271–274.

    Article  Google Scholar 

  25. Metelkina, O. V., Lunin, V. V., Sadykov, V. A. et al., A sol-gel derived CuOx/Al2O3-ZrO2 catalyst for the selective reduction of NO by propane in the presence of excess oxygen, Catal. Lett., 2002, 78(1-4): 111–114.

    Article  Google Scholar 

  26. Liotta, L. F., Pantaleo, G., Macaluso, A. et al., CoOx catalysts supported on alumina and alumina-baria: influence of the support on the cobalt species and their activity in NO reduction by C3H6 in lean conditions, Appl. Catal. A, 2003, 245(1): 167–177.

    Article  Google Scholar 

  27. Shimizu, K., Satsuma, A., Hattori, T., Selective catalytic reduction of NO by hydrocarbons on Ga2O3/Al2O3 catalysts, Appl. Catal. B, 1998, 16(4): 319–326.

    Article  Google Scholar 

  28. Seker, E., Cavataio, J., Gulari, E. et al., Nitric oxide reduction by propene over silver/alumina and silver-gold/alumina catalysts: effect of preparation methods, Appl. Catal. A, 1999, 183(1): 121–134.

    Article  Google Scholar 

  29. Bethke, K. A., Kung, H. H., Supported Ag catalysts for the lean reduction of NO with C3H6, J. Catal., 1997, 172(1): 93–102.

    Article  Google Scholar 

  30. Meunier, F. C., Ukropec, R., Stapleton, C. et al., Effect of the silver loading and some other experimental parameters on the selective reduction of NO with C3 over Al2O3 and ZrO2-based catalysts, Appl. Catal. B, 2001, 30(1-2): 163–172.

    Article  Google Scholar 

  31. Maunula, T., Ahola, J., Hamada, H., Reaction mechanism and kinetics of NOx reduction by propene on CoOx/alumina catalysts in lean conditions, Appl. Catal. B, 2000, 26(3): 173–192.

    Article  Google Scholar 

  32. Horiuchi, T., Fujiwara, T., Chen, L. et al., Selective catalytic reduction of NO by C3H6 over Co/Al2O3 catalyst with extremely low cobalt loading, Catal. Lett., 2002, 78(1-4): 319–323.

    Article  Google Scholar 

  33. Haneda, M., Kintaichi, Y., Bion, N. et al., Mechanistic study of the effect of coexisting H2O on the selective reduction of NO with propene over sol-gel prepared In2O3-Al2O3 catalyst, Appl. Catal. B, 2003, 42(1): 57–68.

    Article  Google Scholar 

  34. Park, P. W., Ragle, C. S., Boyer, C. L. et al., In2O3/Al2O3 catalysts for NOx reduction in lean condition, J. Catal., 2002, 210(1): 97–105.

    Article  Google Scholar 

  35. Park, P. W., Kung, H. H., Kim, D. W. et al., Characterization of SnO2/Al2O3 lean NOx catalysts, J. Catal., 1999, 184(2): 440–454.

    Article  Google Scholar 

  36. Liu, Z., Hao, J., Fu, L. et al., Promoting effect of sol-gel method and pre-treatment on the activity of SnO2/Al2O3 catalyst for NO reduction by propene, React. Kinet. Catal. Lett., 2003, 80(1): 45–52.

    Article  Google Scholar 

  37. Maunula, T., Kintaichi, Y., Inaba, M. et al., Enhanced activity of In and Ga-supported sol-gel alumina catalysts for NO reduction by hydrocarbons in lean conditions, Appl. Catal. B, 1998, 15(3-4): 291–304.

    Article  Google Scholar 

  38. Chen, L., Horiuchi, T., Mori, T., On the promotional effect of Sn in Co-Sn/Al2O3 catalyst for NO selective reduction, Catal. Lett., 2001, 72(1-2): 71–75.

    Article  Google Scholar 

  39. Haneda, M., Kintaichi, Y., Shimada, H. et al., Selective reduction of NO with propene over Ga2O3-Al2O3: effect of sol-gel method on the catalytic performance, J. Catal., 2000, 192(1): 137–148.

    Article  Google Scholar 

  40. Liu, Z., Hao, J., Fu, L. et al., Activity enhancement of bimetallic Co-In/Al2O3 catalyst for the selective reduction of NO by propene, Appl. Catal. B, 2004, 48(1): 37–48.

    Article  Google Scholar 

  41. Haneda, M., Kintaichi, Y., Hamada, H., Effect of SO2 on the catalytic activity of Ga2O3-Al2O3 for the selective reduction of NO with propene in the presence of oxygen, Appl. Catal. B, 2001, 31(4): 251–261.

    Article  Google Scholar 

  42. Zhu, T. L., Li, W. B., Hao, J. M., Selective catalytic reduction of nitric oxide with propene over Ag/Al2O3, Envrion. Sci. (in Chinese), 2000, 21(2): 7–10.

    Google Scholar 

  43. Chen, L., Horiuchi, T., Osaki, T. et al., Catalytic selective reduction of NO with propylene over Cu-Al2O3 catalysts: influence of catalyst preparation method, Appl. Catal. B, 1999, 23(4): 259–269.

    Article  Google Scholar 

  44. Maunula, T., Kintaichi, Y., Haneda, M. et al., Preparation and reaction mechanistic characterization of sol-gel indium/alumina catalysts developed for NOx reduction by propene in lean conditions, Catal. Lett., 1999, 61(3-4): 121–130.

    Article  Google Scholar 

  45. Wei, J. Y., Zhu, Y. X., Xie, Y. C., Influence of preparation methods on structure of tin-zirconium solid solution and its catalytic performance in NO selective reduction, Chin. J. Catal. (in Chinese), 2003, 24: 137–142.

    Google Scholar 

  46. Liu, Z., Hao, J., Fu, L. et al., Selective reduction of NOx with propene over SnO2/Al2O3 catalyst, Environ. Sci. (in Chinese), 2004, 25(4): 7–12.

    Google Scholar 

  47. Shimizu, K., Satsuma, A., Hattori, T., Catalytic performance of Ag-Al2O3 catalyst for the selective catalytic reduction of NO by higher hydrocarbons, Appl. Catal. B, 2000, 25(4): 239–247.

    Article  Google Scholar 

  48. Zhu, T., Hao, J., Li, W., Enhancing effect of SO2 on selective catalytic reduction of NO by methanol over Ag/Al2O3, Chem. Lett., 2000: 478–479.

  49. Shibata, J., Shimizu, K., Satsuma, A. et al., Influence of hydrocarbon structure on selective catalytic reduction of NO by hydrocarbons over Cu-Al2O3, Appl. Catal. B, 2002, 37(3): 197–204.

    Article  Google Scholar 

  50. Haneda, M., Kintaichi, Y., Hamada, H., Promoting effect of H2O on the activity of In2O3 doped Ga2O3-Al2O3 for the selective reduction of nitrogen monoxide, Catal. Lett., 1998, 55(1): 47–55.

    Article  Google Scholar 

  51. Yu, Y. B., He, H., Mechanistic Study of lean NOx reduction with propene over Ag/Al2O3 by in situ DRIFTS, Chin. J. Catal. (in Chinese), 2003, 24: 385–390.

    Google Scholar 

  52. Haneda, M., Kintaichi, Y., Hamada, H., Activity enhancement of SnO2-doped Ga2O3-Al2O3 catalysts by coexisting H2O for the selective reduction of NO with propene, Appl. Catal. B, 1999, 20(4): 289–300.

    Article  Google Scholar 

  53. Yan, J., Kung, M. C., Sachtler, W. M. H. et al., Co/Al2O3 lean NOx reduction catalyst, J. Catal., 1997, 172(1): 178–186.

    Article  Google Scholar 

  54. Kung, M. C., Park, P. W., Kim, D. W. et al., Lean NOx catalysis over Sn/γ-Al2O3 catalysts, J. Catal., 1997, 181(1): 1–5.

    Article  Google Scholar 

  55. Liu, Z., Hao, J., Fu, L. et al., Cooperation of Ag/Al2O3 and Sn/ Al2O3 catalysts for the selective reduction of NO by propene, Chem. Eng. Technol., 2004, 27(1): 77–79.

    Article  Google Scholar 

  56. Li, Y., Armor, J. N., Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen, Appl. Catal. B, 1992, 1(1): 31–40.

    Article  Google Scholar 

  57. Sato, S., Yu, Y., Yahiro, H. et al., Cu-ZSM-5 zeolite as highly active catalyst for removal of nitrogen monoxide from emission of diesel engines, Appl. Catal., 1991, 70(1): 1–5.

    Article  Google Scholar 

  58. Amiridis, M. D., Zhang, T., Farrauto, R. J., Selective catalytic reduction of nitric oxide by hydrocarbons, Appl. Catal. B, 1996, 10(1-3): 203–227.

    Article  Google Scholar 

  59. Sato, K., Fujimoto, T., Kanai, S. et al., Catalytic performance of silver ion-exchange saponite for the selective reduction of nitrogen monoxide in the presence of excess oxygen, Appl. Catal. B, 1997, 13(1): 27–33.

    Article  Google Scholar 

  60. Misono, M., Kondo, K., Catalytic removal of nitrogen monoxide over rare earth ion-exchanged zeolites in the presence of propene and oxygen, Chem. Lett., 1991: 1001–1002.

  61. Yogo, K., Tanaka, S., Ihara, M. et al., Selective reduction of NO with propane on gallium ion-exchanged zeolites, Chem. Lett., 1992: 1025–1028.

  62. Yogo, K., Ihara, M., Terasaki, I. et al., Selective catalytic reduction of nitric oxide by ethene an gallium ion-exchanged ZSM-5 under oxygen-rich conditions, Appl. Catal. B, 1993, 2(1): 1–5.

    Article  Google Scholar 

  63. Ogura, M., Kikuchi, E., Intrapore catalysis in NO reduction with methane on Ir/In/H-ZSM-5 catalyst, Chem. Lett., 1996: 1017–1018.

  64. Ren, L., Zhang, T., Liang, D. et al., Effect of addition of Zn on the catalytic activity of a Co/HZSM-5 catalyst for the SCR of NOx with CH4, Appl. Catal. B, 2002, 35(4): 317–321.

    Article  Google Scholar 

  65. Wen, B., Sachtler, W. M. H., Enhanced catalytic performance of Co/MFI by hydrothermal treatment, Catal. Lett., 2003, 86(1-3): 39–42.

    Article  Google Scholar 

  66. Feng, X., Hall, W. K., FeZSM-5: a durable SCR catalyst for NOx removal from combustion streams, J. Catal., 1997, 166(2): 368–376.

    Article  Google Scholar 

  67. Obuchi, A., Ohi, A., Nakamura, M. et al., Performance of platinum-group metal catalysts for the selective reduction of nitrogen oxides by hydrocarbons, Appl. Catal. B, 1993, 2(1): 71–80.

    Article  Google Scholar 

  68. Bamwenda, G. R., Ogata, A., Obuchi, A. et al., Selective reduction of nitric oxide with propene over platinum-group based catalysts: studies of surface species and catalytic activity, Appl. Catal. B, 1995, 6(4): 311–323.

    Article  Google Scholar 

  69. Burch, R., Watling, T. C., The effect of promoters on Pt/Al2O3 catalysts for the reduction of NO by C3H6 under lean-burn conditions, Appl. Catal. B, 1997, 11(2): 207–216.

    Article  Google Scholar 

  70. Fujii, R., Seki, M., Shinoda, J. et al., High activity of Pt/AlPO4 catalyst for selective catalytic reduction of nitrogen monoxide by propene in excess oxygen, Chem. Lett., 2003: 764–765.

  71. Burch, R., Millington, P. J., Selective reduction of NOx by hydrocarbons in excess oxygen by alumina-and silica-supported catalysts, Catal. Today, 1996, 29(1-4): 37–42.

    Article  Google Scholar 

  72. Ueda, A., Oshima, T., Haruta, M., Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides, Appl. Catal. B, 1997, 12(2-3): 81–93.

    Article  Google Scholar 

  73. Qi, S. X., Zou, X. H., Xu, X. F. et al., TPD-MS study of nitric oxide reduction with propene on Au/Al2O3 catalyst, Chin. J. Catal. (in Chinese), 2003, 24: 203–207.

    Google Scholar 

  74. Seker, E., Gulari, E., Single step sol-gel made gold on alumina catalyst for selective reduction of NOx under oxidizing conditions: effect of gold precursor and reaction conditions, Appl. Catal. A, 2002, 232(1-2): 203–217.

    Article  Google Scholar 

  75. Efthimiadis, E. A., Lionta, G. D., Christoforou, S. C. et al., The effect of CH4, H2O and SO2 on the NO reduction with C3H6, Catal. Today, 1998, 40(1): 15–26.

    Article  Google Scholar 

  76. Burch, R., Ottery, D., The selective reduction of nitrogen oxides by higher hydrocarbons on Pt catalysts under lean-burn conditions, Appl. Catal. B, 1997, 13(2): 105–111.

    Article  Google Scholar 

  77. Richter, M., Langpape, M., Kolf, S. et al., Combinatorial preparation and high-throughput catalytic tests of multi-component deNOx catalysts, Appl. Catal. B, 2002, 36(4): 261–277.

    Article  Google Scholar 

  78. Yadera, T., Selective reduction of NOx by ethanol on catalysts composed of Ag/Al2O3 and Cu/TiO2 without formation of harmful by-products, Appl. Catal. B, 1998, 16(2): 155–164.

    Article  Google Scholar 

  79. Li, J., Hao, J., Fu, L. et al., Cooperation of Pt/Al2O3 and In/Al2O3 catalysts for NO reduction by propene in lean burn conditions, Appl. Catal. A, 2004, 265(1): 43–52.

    Article  Google Scholar 

  80. Li, J., Hao, J. Fu, L. et al., Selective catalytic reduction of nitrogen oxide by propene over noble catalysts in the presence of excess oxygen, Chem. J. Chin. Univ. (in Chinese), 2003, 24(11): 2060–2064.

    Google Scholar 

  81. Iwamoto, M., Zengyo, T., Hernandez, A. M. et al., Intermediate addition of reductant between an oxidation and a reduction catalyst for highly selective reduction of NO in excess oxygen, Appl. Catal. B, 1998, 17(3): 259–266.

    Article  Google Scholar 

  82. Iwamoto, M., Hernandez, A. M., Zengyo, T., Oxidation of NO to NO2 on a Pt-MFI zeolite and subsequent reduction of NOx by C2H4 on an In-MFI zeolite: a novel de-NOx strategy in excess oxygen, Chem. Commun., 1997: 37–38.

  83. Yokoyama, C., Misono, M., Catalytic reduction of NO by propene in the presence of oxygen over mechanically mixed metal oxides and Ce-ZSM-5, Catal. Lett., 1994, 29(1): 1–6.

    Article  Google Scholar 

  84. He, H., Wang, J., Feng, Q. et al., Novel Pd promoted Ag/Al2O3 catalyst for the selective reduction of NOx, Appl. Catal. B, 2003, 46(2): 365–370.

    Article  Google Scholar 

  85. Wei, J. Y., Zhu, Y. X., Duan, L. Y. et al., Effect of doped metal oxides on performance of SnxZr1−xO2 solid solution catalysts for NO selective reduction, Chin. J. Catal. (in Chinese), 2003, 24: 414–418.

    Google Scholar 

  86. Suga, K., Sekiba, T., Catalyst system for the purification of exhaust gas, United States Patent, 5811364, 1998-09-22.

  87. Suga, K., Sekiba, T., Catalyst for purifying oxygen rich exhaust gas, United States Patent, 5990038, 1999-11-23.

  88. Suga, K., Nakamura, M., Catalyst system for purifying oxygen rich exhaust gas, United States Patent, 6395675, 2002-05-28.

  89. Seker, E., Gulari, E., Activity and N2 selectivity of sol-gel prepared Pt/alumina catalysts for selective NOx reduction, J. Catal., 2000, 194(1): 4–13.

    Article  Google Scholar 

  90. Burch, R., Scire, S., Selective catalytic reduction of nitric oxide with ethane and methane on some metal exchanged ZSM-5 zeolites, Appl. Catal. B, 1994, 3(4): 295–318.

    Article  Google Scholar 

  91. Burch, R., Breen, J. P., Meunier, F. C., A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts, Appl. Catal. B, 2002, 39(4): 283–303.

    Article  Google Scholar 

  92. Matsumoto, S., Ikeda, Y., Suzuki, H. et al., NOx storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning, Appl. Catal. B, 2000, 25(2-3): 115–124.

    Article  Google Scholar 

  93. Gao, A. M., Lin, P. Y., Chen, J. F. et al., Study of structure and property for NOx storage catalyst BaZrO3, J. Fudan Univ. (Nat. Sci.) (in Chinese), 2003, 42(3): 357–359.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Jiming.

About this article

Cite this article

Zhiming, L., Jiming, H., Lixin, F. et al. Advances in catalytic removal of NOx under lean-burn conditions. Chin.Sci.Bull. 49, 2231–2241 (2004). https://doi.org/10.1360/04wb0054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1360/04wb0054

Keywords

Navigation