Skip to main content
Log in

Effect of concentration on surfactant micelle shapes —A molecular dynamics study

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Many aspects of the behavior of surfactants have not been well understood due to the coupling of many different mechanisms. Computer simulation is, therefore, attractive in the sense that it can explore the effect of different mechanisms separately. In this paper, the shapes, structures and sizes of sodium dodecylbenzenesulfonate (SDBS) micelles under different concentrations in an oil/water mixture were studied via molecular dynamics (MD) simulations using a simplified atomistic model which basically maintains the hydrophile and lipophile properties of the surfactant molecules. Above the critical micellar concentration (cmc), surfactant molecules aggregate spontaneously to form a wide variety of assemblies, from spherical to rodlike, wormlike and bilayer micelles. Changes in their ratios of the principle moments of inertia (g1/g3, g2/g3) indicated the transition of micelle shapes at different concentrations. The aggregation number of micelle is found to have a power-law dependence on surfactant concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartley, G. S., Aqueous solutions of paraffin chain salts, Paris: Hermann, 1936.

    Google Scholar 

  2. Debye, P., Anacker, E. W., Micelle shape from dissymmetry measurements, J. Phys. Colloid Chem., 1951, 55(5): 644–655.

    Article  CAS  Google Scholar 

  3. Bruce, C. D., Berkowitz, M. L., Perera, L. et al., Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution, J. Phys. Chem. B, 2002, 106(15): 3788–3793.

    Article  CAS  Google Scholar 

  4. Maillet, J. B., Lachet, V., Coveney, P. V., Large scale molecular dynamics simulation of self-assembly processes in short and long chain cationic surfactants, Phys. Chem. Chem. Phys., 1999, 1(23): 5277–5290.

    Article  CAS  Google Scholar 

  5. Shinto, H., Tsuji, S., Miyahara, M. et al., Molecular dynamics simulations of surfactant aggregation on hydrophilic walls in micellar solutions, Langmuir, 1999, 15(2): 578–586.

    Article  CAS  Google Scholar 

  6. Fodi, B., Hentschke, R., Simulated phase behavior of model surfactant solutions, Langmuir, 2000, 16(4): 1626–1633.

    Article  CAS  Google Scholar 

  7. Marrink, S. J., Tieleman, D. P., Mark, A. E., Molecular dynamics simulation of the kinetics of spontaneous micelle formation, J. Phys. Chem. B, 2000, 104(51): 12165–12173.

    Article  CAS  Google Scholar 

  8. Maiti, P. K., Lansac, Y., Glaser, M. A., Clark, N. A., Self-assembly in surfactant oligomers: a coarse-grained description through molecular dynamics simulations, Langmuir, 2002, 18(5): 1908–1918.

    Article  CAS  Google Scholar 

  9. Palmer, J. B., Liu, J., Simulations of micelle self-assembly in surfactant solutions, Langmuir, 1996, 12(3): 746–753.

    Article  CAS  Google Scholar 

  10. Palmer, J. B., Liu, J., Effects of solute-surfactant interactions on micelle formation in surfactant solutions, Langmuir, 1996, 12(25): 6015–6021.

    Article  CAS  Google Scholar 

  11. Goetz, R., Lipowsky, R., Computer simulations of bilayer membranes: self-assembly and interfacial tension, J. Chem. Phys., 1998, 108(17): 7397–7409.

    Article  CAS  Google Scholar 

  12. Gao, J., Ge, W., Hu, G. et al., From homogeneous dispersion to micelless—A molecular dynamics simulation on the compromise of the hydrophilic and hydrophobic effects of sodium dodecyl sulfate in aqueous solution, Langmuir, 2005, 21(11): 5223–5229

    Article  CAS  Google Scholar 

  13. Li, J., Kwauk, M., Exploring complex systems in chemical engineering-the multi-scale methodology, Chemical Engineering Science, 2003, 58(3–6): 521–535.

    Article  CAS  Google Scholar 

  14. Smit, B., Hilbers, P. A. J., Esselink, K. et al., Computer simulations of a water/oil interface in the presence of micelles. Nature, 1990, 348(6302): 624–625.

    Article  CAS  Google Scholar 

  15. Schweighofer, K. J., Essmann, U., Berkowitz, M., Simulation of sodium dodecyl sulfate at the water-vapor and water-carbon tet- rachloride interfaces at low surface coverage, J. Phys. Chem. B, 1997, 101(19): 3793–3799.

    Article  CAS  Google Scholar 

  16. Brown, D., Clarke, J. H. R., Molecular dynamics study of chain configurations inn-alkane-like liquids, J. Chem. Phys., 1994, 100(2): 1684–1692.

    Article  CAS  Google Scholar 

  17. Allen, M. P., Tildesley, D. J., Computer Simulation of Liquids, Oxford: Clarendon Press, 1990.

    Google Scholar 

  18. Ryckaert, J. P., Ciccotti, G., Berendsen, H. J. C., Numerical integration of the cartesian equations of motion of a system with constrains: molecular dynamics ofn-alkanes, J. Comput. Phys., 1977, 23(3): 327–341.

    Article  CAS  Google Scholar 

  19. Rapaport, D. C., The Art of Molecular Dynamics Simulation, Cambridge: Cambridge University Press, 1995.

    Google Scholar 

  20. Mishic, J. R., Nash, R. J., Fisch, M. R., Liquid crystal phase transition in large grown micelles, Langmuir, 1993, 9(4): 916–919.

    Article  Google Scholar 

  21. Böcker, J., Brickmann, J., Bopp, P., Molecular dynamics simulation study of an n-decyltrimethylammonium chloride micelle in water, J. Phys. Chem., 1994, 98(2): 712–717.

    Article  Google Scholar 

  22. Karaborni, S., O’Connel, J. P., Molecular dynamic simulations of model micelles, 3. Effects of various intermolecular potentials, Langmuir, 1990, 6(5): 905–911.

    Article  CAS  Google Scholar 

  23. Wijmans, C., Linse, P., Modeling of nonionic micelles, Langmuir, 1995, 11(10): 3748–3756.

    Article  CAS  Google Scholar 

  24. Wymore, T., Gao, X. F., Wong, T. C., Molecular dynamics simulation of the structure and dynamics of a dodecylphosphocholine micelle in aqueous solution, J. Mol. Struct., 1999, 485: 195–210.

    Article  Google Scholar 

  25. Israelachvilli, J. N., Mitchell, D. J., Ninham, B. W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, J. Chem. Soc. Faraday Trans. 2, 1976, 72(2): 1525–1568.

    Article  CAS  Google Scholar 

  26. Mukerjee, P., Size distribution of small and large micelles, Multiple equilibrium analysis, J. Phys. Chem., 1972, 76(4): 565–570.

    Article  CAS  Google Scholar 

  27. Missel, P. J., Mazer, N. A., Benedek, G. B. et al., Thermodynamic analysis of the growth of sodium dodecyl sulfate micelles, J. Phys. Chem., 1980, 84(9): 1044–1057.

    Article  CAS  Google Scholar 

  28. Cates M E, Candau S J. Statics and dynamics of worm-like surfactant micelles. J. Physics: Condensed Matter, 1990, 2(33): 6869–6892

    Article  CAS  Google Scholar 

  29. Schurtenberger, P., Cavaco, C., Polymer-like lecithin reverse micelles, 1. A light scattering study, Langmuir, 1994, 10(1): 100–108.

    Article  CAS  Google Scholar 

  30. Schurtenberger, P., Cavaco, C., Tiberg, F. et al., Enormous concentration-induced growth of polymer-like micelles, Langmuir, 1996, 12(12): 2894–2899.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, J., Ge, W. & Li, J. Effect of concentration on surfactant micelle shapes —A molecular dynamics study. Sc. China Ser. B-Chem. 48, 470–475 (2005). https://doi.org/10.1360/042004-71

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/042004-71

Keywords

Navigation