Skip to main content
Log in

The existence of Silnikov’s orbits in one coupled duffing

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

The existence of Silnikov’s orbits in one coupled Duffing equation is discussed by using the fiber structure of invariant manifold and high-dimensional Melnikov’s method. Example and numerical simulation results are also given to demonstrate the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duffing, G., Erzwungene Schwingungen bei Veränderlicher, Eigenfrequenz, F. Vieweg, U., Sohn: Brauschweig, 1918.

    MATH  Google Scholar 

  2. Ueda, Y., Explosion of strange attractor exhibited by Duffing’s equation, Nonlinear Dynamics (ed. Helleman, R. H. G.), New York: New York Academy of Science, 1968, 422–434.

    Google Scholar 

  3. Holmes, P., A nonlinear oscillator with a strange attractor, Phil. Tran. (of the Royal Society), Math. Phys. and Engin. Sci. A, 1979, 292. 419–448.

    Article  MATH  Google Scholar 

  4. Holmes, P., Rand, D., Phase portrait and bifurcation of the nonlinear oscillator:\( \cdot x + (\alpha + \gamma x^2 )\dot x + \beta x + \delta x^3 = 0\), Int. J. Nonlinear Mech., 1980, 15: 449–458.

    Article  MATH  MathSciNet  Google Scholar 

  5. Ueda, Y., Akamatsu, N., Chaotically transitional phenomena in the forced negative resistance oscillator, IEEE Trans. Circuits Sys., 1981, 28: 217–224.

    Article  MathSciNet  Google Scholar 

  6. Yagasaki, K., Numerical detection and continuation of homoclinic points and their bifurcation for maps and periodically forced systems, Int. J. Bifur. and Chaos in Appl. Sci. and Engi., 1998, 8(7): 1617–1627.

    Article  MATH  MathSciNet  Google Scholar 

  7. Wiggins, S., Holmes, P. J., Homoclinic orbits in slowly varying oscillators, SIAM J. Math. Anal., 1988, 18: 612–629.

    Article  MathSciNet  Google Scholar 

  8. Wiggins, S., Global Bifurcation and Chaos-analytical Methods, New York: Springer-Verlag, 1988.

    Google Scholar 

  9. Fenichel, N., Persistence and smoothness of invariant manifold for flows, Ind. Univ. Math. J., 1971, 21: 193–225.

    Article  MATH  MathSciNet  Google Scholar 

  10. Fenichel, N., Geometric singular perturbation theory for ordinary differential equation, SIAM J. Diff. Eqns., 1979, 31: 53–98.

    Article  MATH  MathSciNet  Google Scholar 

  11. Guckenheimer, J., Holmes, P., Nonlinear Oscillation, Dynamical Systems and Bifurcation of Vector Fields, New York: Springer-Verlag, 1983.

    Google Scholar 

  12. Wiggins, S., Introduction to Applied Nonlinear Dynamical System and Chaos, New York: Springer-Verlag, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Jing, Z. & Xu, P. The existence of Silnikov’s orbits in one coupled duffing. Sci. China Ser. A-Math. 46, 11–23 (2003). https://doi.org/10.1360/03ys9002

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03ys9002

Keywords

Navigation