Skip to main content
Log in

Freeze-fracture transmission electron microscopy studies on the self-assemblies of amphiphilic solutions

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Self-assemblies of amphiphiles in solutions were investigated by using freeze-fracture transmission electron microscopy (FF-TEM). Especially, vesicles were characterized by FF-TEM and the transition of self-assemblies was determined. The stacked lamellar Lα-phase was prepared without shear forces by a chemical reaction. The stacked lamellar Lα-phase can be transformed into multilamellar vesicles by the shearing forces that occur when the stacked lamellar Lα-phase sample is turned upside down a few times. The multilamellar vesicles can also be transformed into unilamellar vesicles by high shearing forces. These transitions were demonstrated by FF-TEM measurements. Zn2+-induced vesicle formation in the single-chain surfactant solutions was first achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laughlin, R. G., The Aqueous Phase Behavior of Surfactants, New York: Academic Press, 1996.

    Google Scholar 

  2. Binks, B. P., Modern Characterization Methods of Surfactant Systems, Surfactant Science Series, Vol. 83, New York: Marcel Dekker, 1999.

    Google Scholar 

  3. Feigin, L. A., Syergun, D. I., Structure Analysis by Small-angle X-ray and Neutron Scattering, New York: Kluwer Academic/Plenum Publishers, 1987.

    Google Scholar 

  4. Zhou, S., Burger, C., Chu, B. et al., Spherical bilayer vesicles of fullerene-based surfactants in water: A laser light scattering study, Science, 2001, 291: 1944–1947.

    Article  CAS  Google Scholar 

  5. Viswanathan, R., Schwartz, D. K., Zasadzinski, J. A. et al., Lipid hexatic to crystalline order in Langmuir-Blodgett films, Science, 1995, 269: 51–54.

    Article  CAS  Google Scholar 

  6. Imae, T., Characterization of surfactant assemblies by microscopy, Nihon Yukagaku Kaishi, 1996, 45(10): 197–206.

    Google Scholar 

  7. Jahn, W., Strey, R., Microstructure of microemulsions by freeze fracture electron microscopy, J. Phys. Chem., 1988, 92(8): 2294–2301.

    Article  CAS  Google Scholar 

  8. Hao Jingcheng, Wang Hanqing, Lu Runhua et al., Study on the phase behavior and the microstructures of microemulsions, Sciences in China, Series B, 1997, 40(3): 225–235.

    Article  CAS  Google Scholar 

  9. Hoffmann, H., Gräbner, D., Hornfeck, U. et al., Novel vesicles from single-chain surfactants, J. Phys. Chem. B, 1999, 103(4): 611–614.

    Article  CAS  Google Scholar 

  10. Horbaschek, K., Hoffmann, H., Hao, J., Classic Lα phases as opposed to vesicle phases in cationic-anionic surfactant mixtures, J. Phys. Chem. B, 2000, 104(13): 2781–2784.

    Article  CAS  Google Scholar 

  11. Zemb, Th., Dubois, M., Deme, B. et al., Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions, Science, 1999, 283: 816–819.

    Article  CAS  Google Scholar 

  12. Dubois, M., Deme, B., Gulik-krzywicki, Th. et al., Self-assembly of regular hollow icosahedra in salt-free catanionic solutions, Nature, 2001, 411: 672–675.

    Article  CAS  Google Scholar 

  13. Hao, J., Hoffmann, H., Horbaschek, K., A novel cationic/anionic surfactant system from zwitterionic alkyldimethylamine oxide and dihydroperfluorooctanoic acid, Langmuir, 17(14): 4151–4160.

  14. Horbaschek, K., Hoffmann, H., Thunig, C., Formation and properties of lamellar phases in systems of cationic surfactants and hydroxynaphthoate, J. Colloid Inter. Sci., 1998, 206(2): 439–456.

    Article  CAS  Google Scholar 

  15. Beck, R., Abe, Y., Hoffmann, H., A novel L3-phase from a Ca-salt of an anionic surfactant and a cosurfactant, J. Phy. Chem. B, 2002, 106(13): 3335–3338.

    Article  CAS  Google Scholar 

  16. Hoffmann, H., Thunig, C., Schmiedel, P. et al., Surfactant systems with charged multilamellar vesicles and their rheological properties, Langmuir, 1994, 10(11): 3972–3981.

    Article  CAS  Google Scholar 

  17. Gradzielski, M., Bergmeier, M., Müller, M. et al., Novel gel phase: a cubic phase of densely packed monodisperse, unilamellar vesicles, J. Phys. Chem. B, 1997, 101(10): 1719–1722.

    Article  CAS  Google Scholar 

  18. Zasadzinski, J. A., Evans, C. A., Kisak. E. et al., Complex vesicle-based structures, Curr. Opin. Colloid Inter. Sci., 2001, 6: 85–90.

    Article  CAS  Google Scholar 

  19. Kaler, E. W., Murthy, A. K., Rodriguez, B. E. et al., Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants, Science, 1989, 245: 1371–1374.

    Article  CAS  Google Scholar 

  20. Hao, J., Hoffmann, H., Horbaschek, K., A vesicle phase that is prepared by shear from a novel kinetically produced stacked Lα-phase, J. Phys. Chem. B, 2000, 104(44): 10144–10153.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingcheng Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, J., Huang, J., Xu, G. et al. Freeze-fracture transmission electron microscopy studies on the self-assemblies of amphiphilic solutions. Sc. China Ser. B-Chem. 46, 567–576 (2003). https://doi.org/10.1360/03yb0008

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03yb0008

Keywords

Navigation