Skip to main content
Log in

A cryogenic-electron microscopy study of the one-phase corridor in the phase diagram of a nonionic surfactant-based microemulsion system

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We describe full nanostructural characterization of the “one-phase corridor” in the “χ-cut” phase diagram of the isooctane-water-C12E5 system. We followed the nanostructural development from oil-in-water microemulsion to a bicontinuous microemulsion, and to water-in-oil microemulsion, as the oil content is increased, and temperature is raised accordingly. We used cryogenic-temperature transmission electron microscopy (cryo-TEM) and cryogenic-temperature scanning electron microscopy (cryo-SEM). In most of the composition range studied, we were able to apply both methodologies with similar results. This is a first report of nanostructural mapping of the entire composition range, from water-rich to oil-rich, of a microemulsion system, using well-controlled cryo-specimen preparation. The nanostructural sequence directly imaged here agrees well with theory and previous experimental work by nonimaging techniques, and some, partial electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoar TP, Schulman JH (1943) Transparent water-in-oil dispersions: the oleopathic hydro-micelle. Nature 152:102–3

    Article  CAS  Google Scholar 

  2. Scriven LE (1976) Equilibrium bicontinuous structure. Nature 263:123–5

    Article  CAS  Google Scholar 

  3. Danielsson I, Lindman B (1981) The definition of microemulsion. Colloid Polym Sci 3:391–2

    CAS  Google Scholar 

  4. Friberg SE (1982) Comments on “the definition of microemulsion”. Colloids Surf A 2:201

    Article  Google Scholar 

  5. Evans DF, Wennerström H (1999) The colloidal domain, 2nd edn. Wiley-VCH, New York

    Google Scholar 

  6. Komura S (2007) Mesoscale structures in microemulsions. J Phys Condens Matter 19:463101

    Article  Google Scholar 

  7. Chen SJ, Evans DF, Ninham BW (1984) Properties and structure of three-component ionic microemulsions. J Phys Chem 88:1631–4

    Article  CAS  Google Scholar 

  8. Lin T-L, Liu C-C, Roberts MF, Chen S-H (1991) Structure of mixed short-chain lecithin/long-chain lecithin aggregates studied by small-angle neutron scattering. J Phys Chem 95:6020–7

    Article  CAS  Google Scholar 

  9. Fontell K, Ceglie A, Lindman B, Ninham B (1986) Some observations on phase diagrams and structure in binary and ternary systems of didodecyldimethylammonium bromide. Acta Chem Scand 40:247–56

    Article  Google Scholar 

  10. Lenz U, Hoffmann H (1992) Dynamic behavior of ternary microemulsions consisting of didodecyldimethylammoniumbromide, water and hydrocarbon. Ber Bunnge Ph Chem 96:809–15

    Article  CAS  Google Scholar 

  11. Sottmann T, Stubenrauch C (2009) Phase behavior, interfacial tension and microstructure of microemulsions. In: Stubenrauch C (ed) Microemulsions: background, new concepts, applications, perspectives. John Wiley & Sons, Ltd, Oxford, pp 1–47

    Chapter  Google Scholar 

  12. Sottmann T, Strey R (2005) Microemulsions. In: Lyklema J (ed) Fundamentals of interface and colloid science. Elsevier, Amsterdam, pp 1–96

    Google Scholar 

  13. Lichterfeld F, Schmeling T, Strey R (1986) Microstructure of microemulsions of the system water-n-tetradecane-alkyl polyglycol ether (C12E5). J Phys Chem 90:5762–6

    Article  CAS  Google Scholar 

  14. Stubenrauch C, Sottmann T (2009) Microemulsions stabilized by sugar surfactants in sugar-based surfactants: fundamentals and application. C.C. Ruiz (ed.), CRC Press/Taylor & Francis, Boca Raton

  15. Wolf L, Hoffmann H, Talmon Y, Teshigawara T, Watanabe K (2010) Cryo-TEM imaging of a novel microemulsion system of silicone oil with an anionic/nonionic surfactant mixture. Soft Matter 6:5367

    Article  CAS  Google Scholar 

  16. Yaron PN, Reynolds PA, McGillivray DJ, Mata JP, White JW (2010) Nano- and microstructure of high-internal phase emulsions under shear. J Phys Chem B 114:3500–9

    Article  CAS  Google Scholar 

  17. Kahlweit M, Lessner E, Strey R (1983) Influence of the properties of the oil and the surfactant on the phase behavior of systems of the type water–oil-nonionic surfactant. J Phys Chem 87:5032–40

    Article  CAS  Google Scholar 

  18. Arleth L, Pedersen JS (2001) Droplet polydispersity and shape fluctuations in AOT [bis(2-ethylhexyl)sulfosuccinate sodium salt] microemulsions studied by contrast variation small-angle neutron scattering. Phys Rev E: Stat Phys Plasmas, Fluids 63:061406–1

    Article  CAS  Google Scholar 

  19. Hirasaki GJ, Miller CA, Puerto M (2008) Recent advances in surfactant EOR. International Petroleum Technology Conference, IPTC 2008, December 3, 2008 - December 5. Soc Petrol Eng 1:130–64

    Google Scholar 

  20. Puerto M, Hirasaki GJ, Miller CA, Barnes JR (2010) Surfactant systems for EOR in high-temperature, high-salinity environments. 17th SPE Improved Oil Recovery Symposium, IOR 2010, April 24, 2010 - April 28. Soc Petrol Eng (SPE) 1:356–75

    Google Scholar 

  21. Spernath A, Aserin A (2006) Microemulsions as carriers for drugs and nutraceuticals. Adv Colloid Interface Sci 128–130:47–64

    Article  Google Scholar 

  22. Lutter S, Tiersch B, Koetz J, Boschetti-de-Fierro A, Abetz V (2007) Covalently closed microemulsions in presence of triblock terpolymers. J Colloid Interface Sci 311:447–55

    Article  CAS  Google Scholar 

  23. Gayet F, Kalamouni CE, Lavedan P, Marty J, Brulet A, Viguerie NL (2009) Ionic liquid/oil microemulsions as chemical nanoreactors. Langmuir 25:9741–50

    Article  CAS  Google Scholar 

  24. Kim D, Oh S, Lee J (1999) Preparation of ultrafine monodispersed indium-tin oxide particles in AOT-based reverse microemulsions as nanoreactors. Langmuir 15:1599–603

    Article  CAS  Google Scholar 

  25. Eastoe J, Hollamby MJ, Hudson L (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interface Sci 128–130:5–15

    Article  Google Scholar 

  26. Talmon Y, Adrian M, Dubochet J (1986) Electron beam radiation damage to organic inclusions in vitreous, cubic, and hexagonal ice. J Microscopy 141:375–84

    Article  CAS  Google Scholar 

  27. Kunieda H, Shinoda K (1982) Phase behavior in systems of nonionic surfactant/water/oil around the hydrophile-lipophile-balance temperature (HLB temperature). J Dispersion Sci Technol 3:233–44

    Article  CAS  Google Scholar 

  28. Olsson U, Shinoda K, Lindman B (1986) Change of the structure of microemulsions with the hydrophile-lipophile balance of nonionic surfactant as revealed by NMR self-diffusion studies. J Phys Chem 90:4083–8

    Article  CAS  Google Scholar 

  29. Kahlweit M, Strey R (1986) Phase behavior of quinary systems water-oil-nonionic amphiphile-ionic amphiphile-electrolyte. J Phys Chem 90:5239–44

    Article  CAS  Google Scholar 

  30. Talmon Y (1983) Staining and drying-induced artifacts in electron microscopy of surfactant dispersions. J Colloid Interface Sci 93:366–82

    Article  CAS  Google Scholar 

  31. Bellare JR, Davis HT, Scriven LE, Talmon Y (1988) Controlled environment vitrification system: an improved sample preparation technique. Microsc Res Tech 10:87–111

    Article  CAS  Google Scholar 

  32. Uhlmann DR (1972) A kinetic treatment of glass formation. J Non-Cryst Solids 7:337–48

    Article  CAS  Google Scholar 

  33. Jahn W, Strey R (1988) Microstructure of microemulsions by freeze fracture electron microscopy. J Phys Chem 92:2294–301

    Article  CAS  Google Scholar 

  34. Talmon Y (2007) Seeing giant micelles by cryogenic-temperature transmission electron microscopy (Cryo-TEM). In: Zana R, Kaler EA (eds) Giant micelles. CRC Press, New York, pp 163–178

    Chapter  Google Scholar 

  35. Cui H, Hodgdon TK, Kaler EW, Abezgauz L, Danino D, Lubovsky M, Talmon Y, Pochan DJ (2007) Elucidating the assembled structure of amphiphiles in solution via cryogenic transmission electron microscopy. Soft Matter 3:945–55

    Article  CAS  Google Scholar 

  36. Zhong S, Pochan DJ (2010) Cryogenic transmission electron microscopy for direct observation of polymer and small-molecule materials and structures in solution. J Macromol Sci Polym Rev 50:287–320

    CAS  Google Scholar 

  37. Oostergetel GT, Esselink FJ, Hadziioannou G (1995) Cryo-electron microscopy of block copolymers in an organic solvent. Langmuir 11:3721–4

    Article  CAS  Google Scholar 

  38. Danino D, Gupta R, Satyavolu J, Talmon Y (2002) Direct cryogenic-temperature transmission electron microscopy imaging of phospholipid aggregates in soybean oil. J Colloid Interface Sci 249:180–6

    Article  CAS  Google Scholar 

  39. Davis VA, Parra-Vasquez ANG, Green MJ, Rai PK, Behabtu N, Prieto V, Booker RD, Schmidt J, Kesselman E, Zhou W, Fan H, Adams WW, Hauge RH, Fischer JE, Cohen Y, Talmon Y, Smalley RE, Pasquali M (2009) True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol 4:830–4

    Article  CAS  Google Scholar 

  40. Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, Tsentalovich D, Parra-Vasquez ANG, Schmidt J, Kesselman E, Cohen Y, Talmon Y, Tour JM, Pasquali M (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5:406–11

    Article  CAS  Google Scholar 

  41. Bernheim-Groswasser A, Tlusty T, Safran SA, Talmon Y (1999) Direct observation of phase separation in microemulsion networks. Langmuir 15:5448–53

    Article  CAS  Google Scholar 

  42. Note C, Ruffin J, Tiersch B, Koetz J (2007) The influence of polyampholytes on the phase behavior of microemulsion used as template for the nanoparticle formation. J Dispersion Sci Technol 28:155–64

    Article  CAS  Google Scholar 

  43. Note C, Koetz J, Kosmella S (2006) Structural changes in poly(ethyleneimine) modified microemulsion. J Colloid Interface Sci 302:662–8

    Article  CAS  Google Scholar 

  44. Issman L, Talmon Y (2012) Cryo-SEM specimen preparation under controlled temperature and concentration conditions. J Microsc 246:60–69

    Article  CAS  Google Scholar 

  45. Ben-Barak I, Talmon Y (2012) Direct-imaging cryo-SEM of nanostructure evolution in didodecyl-dimethylammonium bromide-based microemulsions. Z Phys Chem 226:665–674

    Article  CAS  Google Scholar 

  46. Kleinerman O, Parra-Vasquez AN, Green MJ, Behabtu N, Schmidt J, Kesselman E, Young CC, Cohen Y, Pasquali M, Talmon Y (2015) Cryogenic-temperature electron microscopy direct imaging of carbon nanotubes and graphene solutions in superacids. J Microsc 259:16–25

    Article  CAS  Google Scholar 

  47. Kahlweit M, Strey R (1985) Phase behavior of ternary systems of the type H2O-oil-nonionic amphiphile microemulsions. Angew Chem Int Ed Engl 24:654–668

    Article  Google Scholar 

  48. Talmon Y (2015) The study of nanostructured liquids by cryogenic-temperature electron microscopy- A status report. J Mol Liq 210 (Part A):2–8

    Article  CAS  Google Scholar 

  49. Kahlweit M, Strey R, Haase D et al (1987) How to study microemulsions. J Colloid Interface Sci 118:436–453

    Article  CAS  Google Scholar 

  50. Clausen TM, Vinson PK, Minter JR, Davis HT, Talmon Y, Miller WG (1992) Viscoelastic micellar solutions: microscopy and rheology. J Phys Chem 96:474–484

    Article  CAS  Google Scholar 

  51. Koifman N, Schnabel-Lubovsky M, Talmon Y (2013) Nanostructure formation in the lecithin/ isooctane/water System. J Phys Chem B 117:9558–9567

    Article  CAS  Google Scholar 

  52. Fanun M (2009) Microemulsions, properties and applications. In: Surfactant Science Series vol. 144. CRC Press, Boca Raton, p 110

    Google Scholar 

  53. Wolf L, Hoffmann H, Teshigawara T, Okamoto T, Talmon Y (2012) Microemulsions with a HIPME structure. J Phys Chem B 116:2131–2137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our work on microemulsions has been supported by a grant from the Israel Science Foundation (ISF). The cryo-EM work was performed at the Laboratory for Electron Microscopy of Soft Matter, supported by the Technion Russell Berrie Nanotechnology Institute (RBNI). The authors thank Dr. Ellina Kesselman and Ms. Judith Schmidt for help with some of the cryo-TEM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeshayahu Talmon.

Additional information

Dedicated to a dear friend and a superb colleague, Prof. Dr. Heinz Hoffmann on his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidovich, I., Issman, L., de Paula, C. et al. A cryogenic-electron microscopy study of the one-phase corridor in the phase diagram of a nonionic surfactant-based microemulsion system. Colloid Polym Sci 293, 3189–3197 (2015). https://doi.org/10.1007/s00396-015-3773-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3773-7

Keywords

Navigation