Skip to main content
Log in

InP-to-InGaAs interfacial strain grown by using tertiarybutylarsine and tertiarybutylphosphine

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

Lattice-matched InGaAs/lnP heterostructures have been grown by using metalorganic vapor phase epitaxy (MOVPE) with tertiarybutylarsine (TBAs), tertiarybutylphosphine (TBP) as the group V sources. The results of X-ray diffraction on InGaAs/lnP single herterostructure show that there is a compressive-strained interfacial layer at the InP-to-InGaAs interface. X-ray diffraction of InGaAs/ InP superlattices is successfully simulated by using the same interfacial layer. TBAs purging of InP surface has a significant influence on the interfacial strain. A novel gas switching sequence, which switches group III to the run line earlier than TBAs, is proposed to reduce this interfacial strain. As a result, the average compressive strain of superlattices decreases, and a blue shift of photoluminescence ( PL) peak energy and narrowing in PL width are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ryu, S. W., Jeong, W. G., Kim, I. et al., Reduction of As carryover by pH3 overpressure in MOVPE, J. Crystal Growth, 1997, 179: 26–29.

    Article  Google Scholar 

  2. Nakamura, T., Ae, S., Terakado, T. et al., Highly controlled InGaAs(P)/InP MQW interface grown by using TBAs and TBP precursors, J. Electronic Materials, 1996, 25: 457–460.

    Article  Google Scholar 

  3. Holmes, A. L., Hermbuch, M. E., Fish, G. et al., InP-based MQW structures grown with TBAs TBP, J. Electronic Materials, 1996, 25: 965–969.

    Article  Google Scholar 

  4. Jiang, X. S., Clawson, A. R., Yu, P. K. L., InP-on-InGaAs interface with Ga and In coverage in MOVPE of InGaAs/InP superlattices, J. Crystal Growth, 1995, 147: 8–12.

    Article  Google Scholar 

  5. Seifer, W., Hessman, D., Liu, X. et a1., Formation of interface layers in GaInAs/InP heterostmctures: A re-evalution using ultrathin quantum wells as a probe, J. Appl. Phys., 1994, 75: 1501 -1506.

    Article  Google Scholar 

  6. Meyer, R., Hollfelder, M., Hardtdegen, H. et al., Characterization of interface structure in GaInAs/InP superlattice by means of X-ray diffraction, J. Crystal Growth, 1992, 124: 583–587.

    Article  Google Scholar 

  7. Kamei, H., Hayashi, H., MOVPE growth of InGaAs/InP and gaInAs/GaInAsP quantum wells, J. Crystal Growth, 1991, 107: 567–570.

    Article  Google Scholar 

  8. Hybertsen, M. S., Interface strain at the lattice-matched InGaAs/InP heterointerface, J. Vac. Sci. Techno1., 1990, B8: 773–778.

    Article  Google Scholar 

  9. Vanelle, E., Mesrine, M., Grandjean, N. et al., Interface effects on the photoluminescence of GaAs/GaInP quantum wells, J. Appl. Phys., 1998, 37: 15–20.

    Article  Google Scholar 

  10. Vignaud, D., Wallart, X., Mollot, F., Direct and inverse equivalent InAlAs-InP interfaces grown by gas-source molecular beam epitaxy, Appl. Phys. Lett., 1998, 72: 1075–1079.

    Article  Google Scholar 

  11. Vandenberg, J. M., Harnm, R. A., Chu, S. N. G., Interface structure of large-period lattice matched InGaAs/InP superlattice grown by MOMBE: A high-resolution X-ray diffraction study, J. Crystal Growth, 1994, 144: 9–12.

    Article  Google Scholar 

  12. Böhrer, J., Krost, A., Bimberg, D., InAsP islands at the lower interface of InGaAs/InP quantum wells grown by MOCVD, Appl. Phys. Lett., 1992, 60: 2258–2262.

    Article  Google Scholar 

  13. Xu, X. G., Giesen, C., Xu, J. et al., Si2,H6 doping of InGaAs by using TBAs, J. Crystal Growth, 1997, 181: 26–30.

    Article  Google Scholar 

  14. He, X. G., Erdtmann, M., Williams, R. et al., Correlation between X-ray diffraction patterns and strain distribution inside GaInPIGaAs superlattices, Razeghi, Appl. Phys. Lett., 1994, 65: 2812–2816.

    Article  Google Scholar 

  15. Wie, C. R., High-resolution X-ray diffraction characterization of semiconductor structures, Materials Science and Engineering, 1994, R13: 1–5.

    Google Scholar 

  16. Jonsson, J., Reinhardt, F., Zom, M. et al., In-situ time-resovled monitoring of pH3 induced exchange reactions on GaAs under MOVPE conditions, Appl. Phys. Lett., 1994, 64: 1998–2001.

    Article  Google Scholar 

  17. Yates, M. J., Aylett, M. R., Pemn, S. D. et al., Charaterization of InP to GaInAs and GaInP to InP interfaces using tilted cleaved comer TEM, J. Crystal Growth, 1992, 124: 604–609.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Cui, D., Tang, Z. et al. InP-to-InGaAs interfacial strain grown by using tertiarybutylarsine and tertiarybutylphosphine. Sci. China Ser. A-Math. 45, 655–660 (2002). https://doi.org/10.1360/02ys9071

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02ys9071

Keywords

Navigation