Skip to main content
Log in

Three-dimensional beam propagation method based on the variable transformed Galerkin’s method

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

A novel three-dimensional beam propagation method (BPM) based on the variable transformed Galerkin’s method is introduced for simulating optical field propagation in three-dimensional dielectric structures. The infinite Cartesian x-y plane is mapped into a unit square by a tangent-type function transformation. Consequently, the infinite region problem is converted into the finite region problem. Thus, the boundary truncation is eliminated and the calculation accuracy is promoted. The three-dimensional BPM basic equation is reduced to a set of first-order ordinary differential equations through sinusoidal basis function, which fits arbitrary cladding optical waveguide, then direct solution of the resulting equations by means of the Runge-Kutta method. In addition, the calculation is efficient due to the small matrix derived from the present technique. Both z-invariant and z-variant examples are considered to test both the accuracy and utility of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scarmozzino, R., Gopinath, A. R., Pregla, R. et al., Numerical techniques for modeling guide-wave photonic devices, IEEE J. Selected Topics in Quantum Electron, 2000, 6: 150–162.

    Article  Google Scholar 

  2. Jin Guoliang, Hou Lin, Zhou Yi et al., The BPM design for waveguide modulator, Acta Optica Sinica, 1997, 17: 1374–1379.

    Google Scholar 

  3. Feit, M. D., Fleck, J. A., Light propagation in graded-index optical fibers, Appl. Opt., 1978, 17: 3990–3998.

    Article  Google Scholar 

  4. Lee, P. C., Schulz, D., Voges, E., Three-dimensional finite difference beam propagation algorithms for photonics devices, J. Lightwave Technol., 1992, 10: 1832–1838.

    Article  Google Scholar 

  5. Tsuji, Y., Koshiba, M., Shiraishi, T., Finite element beam propagation method for three-dimensional optical waveguide structures, J. Lightwave Technol., 1997, 15: 1728–1734.

    Article  Google Scholar 

  6. Gerdes, J., Pregla, R., Beam-propagation algorithm based on the method of lines, J. Opt. Soc. Am. B, 1991, 8: 389–394.

    Article  Google Scholar 

  7. Henry, C. H., Verbeek, B. H., Solution of the scalar wave equation for arbitrarily shaped dielectric waveguides by two-dimensional Fourier analysis, J. Lightwave Technol., 1989, 7: 308–313.

    Article  Google Scholar 

  8. Marcuse, D., Solution of the vector wave equation for general dielectric waveguides by the Galerkin method, IEEE J. Quantum Electron., 1992, 28: 459–465.

    Article  Google Scholar 

  9. Gallawa, R. L., Goyal, I. C., Tu, Y. et al., Optical waveguides modes: an approximate solution using Galerkin’s method with Hermite-Gauss basis functions, IEEE J. Quantum Electron, 1991, 27: 518–522.

    Article  Google Scholar 

  10. Weisshaar, A., Li, J., Gallawa, R. L. et al., Vector and quasi-vector solutions for optical waveguide modes using efficient Galerkin’s method with Hermite-Gauss basis functions, J. Lightwave Technol., 1995, 13: 1795–1800.

    Article  Google Scholar 

  11. Hewlett, S. J., Ladouceur, F., Fourier decomposition method applied to mapped infinite domains: scalar analysis of dielectric waveguides down to modal cutoff, J. Lightwave Technol., 1995, 13: 357–383.

    Article  Google Scholar 

  12. Forastiere, M. A., Righini, G. C., Improved scalar analysis of integrated optical structures by the mapped Galerkin method and Arnoldi iteration, J. Opt. Soc. Am. A, 2001, 18: 966–974.

    Article  MathSciNet  Google Scholar 

  13. Lo, K. M., Li, E. H., Solutions of the quasi-vector wave equation for optical waveguide in a mapped infinite domain by the Galerkin’s method, J. Lightwave Technol., 1998, 16: 937–944.

    Article  Google Scholar 

  14. Xiao Jinbiao, Sun Xiaohan, Zhang Mingde et al., Analysis of vectorial eigenmode for optical waveguide based on the variable transformed series expansion method, Engineering Science, 2001, 3: 49–53.

    Google Scholar 

  15. Matsuhara, M., A novel beam propagation method based on the Galerkin method, IEICE Trans., 1989, J72C-I: 473–478.

    Google Scholar 

  16. Maruta, A., Matsuhara, M., Analysis of lightwave propagaton in a bent waveguide by the Galerkin method, IEICE Trans. on Electron., 1992, E75-C: 736–740.

    Google Scholar 

  17. Chiang, K. S., Analysis of rectangular dielectric waveguides: effective-index method with built-in perturbation correction, Electron. Lett., 1992, 28: 388–390.

    Article  Google Scholar 

  18. Qing, W. P., Fang, D. G., Huang, W. P., A new bpm algorithm based on the series expansion method, Microwave & Optical Technol. Lett., 2000, 24: 125–129.

    Article  Google Scholar 

  19. Kasaya, K., Mitomi, O., Naganuma, M. et al., A simple laterally tapered waveguide for low-loss coupling to single-mode fibers, IEEE Photon Technol. Lett., 1993, 5: 345–347.

    Article  Google Scholar 

  20. Walpole, J. N., Semiconductor amplifiers and lasers with tapered gain regions, Optical & Quantum Electron, 1996, 28: 623–645.

    Article  Google Scholar 

  21. Moerman, I., Van Daele, P. V., Demeester, P. M., A review on fabrication technologies for the monolithic integration of tapers with III–V semiconductors devices, IEEE J. Selected Topics in Quantum Electron, 1997, 3: 1308–1320.

    Article  Google Scholar 

  22. Huang, W. P., Coupled-mode theory for optical waveguides: An overview, J. Opt. Soc. Am. A, 1994, 11: 963–983

    Article  Google Scholar 

  23. Laliew, C., Lovseth, S. W., Zhang, X. B. et al., A linearized optical directional-coupler modulator at 1.3µm, J. Lightwave Technol., 2000, 18: 1244–1249.

    Article  Google Scholar 

  24. Noro, H., Nakayama, T., A new approach to scalar and semivector mode analysis of optical wavegudes, J. Lightwave Technol., 1996, 14: 546–1556.

    Article  Google Scholar 

  25. Marcuse, D., Theory of Dielectric Optical Waveguides, New York: McGraw-Hill, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Jinbiao or Sun Xiaohan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, J., Sun, X. & Zhang, M. Three-dimensional beam propagation method based on the variable transformed Galerkin’s method. Sci China Ser F 47, 34–43 (2004). https://doi.org/10.1360/02yf0169

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02yf0169

Keywords

Navigation