Skip to main content
Log in

New traveling wave solutions for paraxial wave equation via two integrating techniques

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The purpose of the presented work is to obtain the exact solutions of the Paraxial wave equation using two different methods, the modified auxiliary equation method and \(\left( \frac{G'}{G},\frac{1}{G}\right) \)-expansion method. Results obtained by these methods are unique. The paraxial wave equation is a partial differential equation that describes the propagation of optical waves in the paraxial approximation. This equation is derived from Maxwell’s equations, which describe the behavior of electromagnetic waves. The paraxial wave equation is a fundamental tool in optics for analyzing the propagation of optical waves in the paraxial approximation. The application of integrating techniques allows researchers and engineers to obtain solutions and predict the behavior of optical systems in a wide range of applications. As a result of modified auxiliary equation method and \(\left( \frac{G'}{G},\frac{1}{G}\right) \)-expansion method, new soliton solutions of the given model are extracted. These solutions include hyperbolic solutions and periodic solutions. The necessary constraint conditions for the existence of solutions are also provided. Moreover, for appropriate parametric values, acquired findings are displayed via contour, 2D and 3D graphics that show the physical relevance and dynamical behaviors of the proposed equation. It is noticed that proposed methods are well organized and efficient in obtaining accurate solutions for many nonlinear evolution equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Ablowitz, M.J., Ablowitz, M.A., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering. 149, (1991)

  • Akram, G., Sadaf, M., Iqra, Z.: The dynamical study of Biswas–Arshed equation via modified auxiliary equation method. Optik (Int. Gen. Light Electrons Opt.) 255, 168614 (2022)

    ADS  Google Scholar 

  • Akram, G., Sadaf, M., Khan, M.A.U.: Abundant optical solitons for Lakshmanan–Porsezian–Daniel model by the modified auxiliary equation method. Optik (Int. Gen. Light Electrons Opt.) 251, 168163 (2022)

    ADS  Google Scholar 

  • Ali, K., Rizvi, S.T.R., Nawaz, B., Younis, M.: Optical solitons for paraxial wave equation in Kerr media. Mod. Phys. Lett. B 33(03), 1950020 (2019)

    ADS  MathSciNet  Google Scholar 

  • Arshad, M., Seadawy, A.R., Lu, D., Saleem, M.S.: Elliptic function solutions, modulation instability and optical solitons analysis of the paraxial wave dynamical model with Kerr media. Opt. Quantum Electron. 53, 1–20 (2021)

    Google Scholar 

  • Ghanbari, B.: Abundant soliton solutions for the Hirota–Maccari equation via the generalized exponential rational function method. Mod. Phys. Lett. B 33(09), 1950106 (2019)

    ADS  MathSciNet  Google Scholar 

  • Ghanbari, B., Akgül, A.: Abundant new analytical and approximate solutions to the generalized Schamel equation. Phys. Scr. 95(7), 075201 (2020)

    ADS  Google Scholar 

  • Ghanbari, B., Baleanu, D.: New solutions of Gardner’s equation using two analytical methods. Front. Phys. 7, 202 (2019)

    Google Scholar 

  • Ghanbari, B., Baleanu, D.: New optical solutions of the fractional Gerdjikov–Ivanov equation with conformable derivative. Front. Phys. 8, 167 (2020)

    Google Scholar 

  • Ghanbari, B., Gómez-Aguilar, J.F.: Optical soliton solutions for the nonlinear Radhakrishnan–Kundu–Lakshmanan equation. Mod. Phys. Lett. B 33(32), 1950402 (2019)

    ADS  MathSciNet  Google Scholar 

  • Ghanbari, B., Gómez-Aguilar, J.F.: New exact optical soliton solutions for nonlinear Schrödinger equation with second-order spatio-temporal dispersion involving M-derivative. Mod. Phys. Lett. B 33(20), 1950235 (2019)

    ADS  Google Scholar 

  • Ghanbari, B., Kuo, C.K.: New exact wave solutions of the variable-coefficient \((1+ 1)\)-dimensional Benjamin–Bona–Mahony and \((2+ 1)\)-dimensional asymmetric Nizhnik–Novikov–Veselov equations via the generalized exponential rational function method. Eur. Phys. J. Plus 134(7), 334 (2019)

    Google Scholar 

  • Ghanbari, B., Baleanu, D., Al Qurashi, M.: New exact solutions of the generalized Benjamin–Bona–Mahony equation. Symmetry 11(1), 20 (2018)

    ADS  Google Scholar 

  • Gürses, M., Pekcan, A.: Soliton solutions of the shifted nonlocal \({NLS}\) and \({MK}d{V}\) equations. Phys. Lett. A 422, 127793 (2022)

    Google Scholar 

  • He, J.H.: Special functions for solving nonlinear differential equations. Int. J. Appl. Comput. Math. 7(3), 84 (2021)

    MathSciNet  Google Scholar 

  • Khater, M., Ghanbari, B.: On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques. Eur. Phys. J. Plus 136(4), 1–28 (2021)

    Google Scholar 

  • Kudryashov, N.A.: On types of nonlinear nonintegrable equations with exact solutions. Phys. Lett. A 155(4–5), 269–275 (1991)

    ADS  MathSciNet  Google Scholar 

  • Li, L., Li, E., Wang, M.: The \((G^{\prime }/G, 1/G)\)-expansion method and its application to travelling wave solutions of the Zakharov equations. Appl. Math. A J. Chin. Univ. 25, 454–462 (2010)

    MathSciNet  Google Scholar 

  • Liu, W., Pang, L., Han, H., Liu, M., Lei, M., Fang, S., Teng, H., Wei, Z.: Tungsten disulfide saturable absorbers for \(67\) fs mode-locked erbium-doped fiber lasers. Opt. Express 25(3), 2950–2959 (2017)

    ADS  Google Scholar 

  • Mahak, N., Akram, G.: The modified auxiliary equation method to investigate solutions of the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity. Optik (Int. Gen. Light Electrons Opt.) 207, 164467 (2020)

    ADS  Google Scholar 

  • Mamun, M.M., Shahadat, A.H.M., Ali, A.M., Majid, W.A.: Some applications of the \((G^{\prime }/G, 1/G)\)-expansion method to find new exact solutions of NLEEs. Eur. Phys. J. Plus 132, 1–15 (2017)

    Google Scholar 

  • Manafian, J.: Optical soliton solutions for Schrödinger-type nonlinear evolution equations by the tan (\(\phi \) (\(\xi \))/2)-expansion method. Optik 127(10), 4222–4245 (2016)

    ADS  Google Scholar 

  • Manafian, J., Aghdaei, M.F., Khalilian, M., Jeddi, R.S.: Application of the generalized \({G^{\prime }/G}\)-expansion method for nonlinear PDEs to obtaining soliton wave solution. Optik 135, 395–406 (2017)

    ADS  Google Scholar 

  • Razzaq, A., Seadawy, A.R., Raza, N.: Heat transfer analysis of viscoelastic fluid flow with fractional Maxwell model in the cylindrical geometry. Phys. Scr. 95(11), 115220 (2020)

    ADS  Google Scholar 

  • Rehman, H.U., Younis, M., Jafar, S., Tahir, M., Saleem, M.S.: Optical solitons of Biswas–Arshed model in birefrigent fiber without four wave mixing. Optik 213, 164669 (2020)

    ADS  Google Scholar 

  • Rehman, H.U., Seadawy, A.R., Younis, M., Yasin, S., Raza, S.T.R., Althobaiti, S.: Monochromatic optical beam propagation of paraxial dynamical model in Kerr media. Results Phys. 31, 105015 (2021)

    Google Scholar 

  • Rehman, H.U., Awan, A.U., Abro, K.A., El Din, E.M.T., Jafar, S., Galal, A.M.: A non-linear study of optical solitons for Kaup–Newell equation without four-wave mixing. J. King Saud Univ.-Sci. 34(5), 102056 (2022)

    Google Scholar 

  • Rehman, H.U., Awan, A.U., Allahyani, S.A., Tag-ElDin, E.M., Binyamin, M.A., Yasin, S.: Exact solution of paraxial wave dynamical model with Kerr Media by using \(\phi \)6 model expansion technique. Results Phys. 42, 105975 (2022)

    Google Scholar 

  • Rizvi, S.T.R., Seadawy, A.R., Younis, M., Javed, I., Iqbal, H.: Lump and optical dromions for paraxial nonlinear Schrödinger equation. Int. J. Mod. Phys. B 35(05), 2150078 (2021)

    ADS  Google Scholar 

  • Rizvi, S.T.R., Seadawy, A.R., Raza, U.: Detailed analysis for chirped pulses to cubic–quintic nonlinear non-paraxial pulse propagation model. J. Geom. Phys. 178, 104561 (2022)

    MathSciNet  Google Scholar 

  • Seadawy, A., Ali, A., Baleanu, D.: Transmission of high-frequency waves in a tranquil medium with general form of the Vakhnenko dynamical equation. Phys. Scr. 95(9), 095208 (2020)

    ADS  Google Scholar 

  • Shahoot, M.A., Alurrfi, E.A.K., Elmrid, M.O.M., Almsiri, M.A., Arwiniya, H.M.A.: \({(\frac{G^{\prime }}{G},\frac{1}{G})}\)-expansion method for solving a nonlinear PDE describing the nonlinear low-pass electrical lines. J. Taibah Univ. Sci. 13, 63–70 (2018)

    Google Scholar 

  • Sindi, C.T., Manafian, J.: Soliton solutions of the quantum Zakharov–Kuznetsov equation which arises in quantum magneto-plasmas. Eur. Phys. J. Plus 132, 1–23 (2017)

    Google Scholar 

  • Teymuri Sindi, C., Manafian, J.: Wave solutions for variants of the \({K}d{V}\)-Burger and the \({K}\) (n, n)-Burger equations by the generalized \({G^{\prime }/G}\)-expansion method. Math. Methods Appl. Sci. 40(12), 4350–4363 (2017)

    ADS  MathSciNet  Google Scholar 

  • Ullah, N.: Exact solution of paraxial wave dynamical model with Kerr law non-linearity using analytical techniques. Open J. Math. Sci. (2023)

  • Wang, M., Li, X., Zhang, J.: The \({(G^{\prime }/ G)}\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)

    ADS  MathSciNet  Google Scholar 

  • Wazwaz, A.M.: Bright and dark optical solitons of the \((2+1)\)-dimensional perturbed nonlinear Schrödinger equation in nonlinear optical fibers. Optik 251, 168334 (2022)

    ADS  Google Scholar 

  • Zayed, E.M.E.: The-expansion method and its applications to some nonlinear evolution equations in the mathematical physics. J. Appl. Math. Comput. 30(1–2), 89–103 (2009)

    MathSciNet  Google Scholar 

  • Zayed, E.M.E.: New traveling wave solutions for higher dimensional nonlinear evolution equations using a generalized-expansion method. J. Phys. A Math. Theor. 42(19), 195202 (2009)

    ADS  MathSciNet  Google Scholar 

  • Zayed, E.M.E., Al-Nowehy, A.G.: New extended auxiliary equation method for finding many new Jacobi elliptic function solutions of three nonlinear Schrödinger equations. Waves Random Complex Media 27(3), 420–439 (2017)

    ADS  Google Scholar 

  • Zayed, E.M.E., Alurrfi, K.A.E.: Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations. Appl. Math. Comput. 289, 111–131 (2016)

    MathSciNet  Google Scholar 

  • Zayed, E.M.E., Gepreel, K.A.: Some applications of the \({G^{\prime }/G}\)-expansion method to non-linear partial differential equations. Appl. Math. Comput. 212(1), 1–13 (2009)

    MathSciNet  Google Scholar 

  • Zayed, E.M.E., Ibrahim, S.A.H., Abdelaziz, M.A.M.: Traveling wave solutions of the nonlinear \((3+1)\)-dimensional Kadomtsev–Petviashvili equation using the two variables \((G^{\prime }/G, 1/G)\)-expansion method-. J. Appl. Math. 1–8, 2012 (2012)

    MathSciNet  Google Scholar 

Download references

Funding

Not available.

Author information

Authors and Affiliations

Authors

Contributions

SA participated in the conceptualization, data curation, investigation, methodology, software implementation, validation, visualization and writing the original draft. MS participated in the conceptualization, administration, validation, visualization and writing of the manuscript. GA participated in the formal analysis, investigation, supervision, review and editing of the manuscript. HS participated in the data curation, formal analysis, software and writing of the original draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saima Arshed.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshed, S., Akram, G., Sadaf, M. et al. New traveling wave solutions for paraxial wave equation via two integrating techniques. Opt Quant Electron 56, 791 (2024). https://doi.org/10.1007/s11082-024-06589-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06589-z

Keywords

Navigation