Skip to main content
Log in

Simulation of multi-scale heterogeneity of porous media and parameter sensitivity analysis

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Because of the inherent multi-scale heterogeneity of porous media and the limitation of single-subject observed data, we propose to combine deterministic and stochastic techniques to simulate heterogeneity. We select a coastal plain sediment system as an example to demonstrate and verify this approach. Firstly, we apply transition probability matrix to determine and delineate the nonstationary unconformity, and combine hydro-stratigraphy analyses to establish the field/large-scale, deterministic stratigraphy model. Secondly, we apply fence diagrams and CPT data to infer the horizontal mean length of hydrofacies, and then build Markov chain models for each depositional system and simulate the local/intermediate-scale, stochastic hydrofacies model. Finally, we combine the stratigraphy and hydrofacies models to get a multi-scale heterogeneous model embedded with quantitative and qualitative observed data, with both deterministic and stochastic characteristics. In order to study the influence of uncertainty in model parameters on solute transport, we build multiple realizations of two types of heterogenous model and use them to simulate groundwater flow and solute transport. The parameter sensitivity analysis shows the 1st and 2nd spatial moments of the contaminant plume increase with the lateral average length of hydrofacies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wood, W. W., It’s the heterogeneity, Ground Water, 2000, 38(1): 1–10.

    Article  Google Scholar 

  2. Koltermann, C. E., Gorelick, S. M., Heterogeneity in sedimentary deposits: A review of structure-imitating, process-imitating, and descriptive approaches, Water Resources Research, 1996, 32: 2617–2658.

    Article  Google Scholar 

  3. Scheibe, T. D., Freyberg, D. L., The use of sedimentological information for geometric simulation of natural porous media structure, Water Resources Research, 1995, 31(12): 3259–3270.

    Article  Google Scholar 

  4. Fogg, G. E., Groundwater flow and sand body interconnectedness in a thick multiple aquifer system. Water Resources Research, 1986, 22(5): 679–694.

    Article  Google Scholar 

  5. Koltermann, C. E., Gorelick, S. M., Paleoclimate signature in terrestrial flood deposits, Science, 1992, 256: 1775–1782.

    Article  Google Scholar 

  6. Webb, E. K., Anderson, M. P., Simulation of preferential flow in three-dimensional heterogenous conductivity fields with realistic internal architecture, Water Resources Research, 1996, 32(3): 533–545.

    Article  Google Scholar 

  7. Marsily, G. de, Delay, F., Teles, V. et al., Some current methods to represent the heterogeneity of natural media in hydrogeology, Hydrogeology Journal, 1998, 6: 115–130.

    Article  Google Scholar 

  8. Weissmann, G. S., Carle, S. F., Fogg, G. E., Three-dimensional hydrofacies modeling based on soil surveys and transition probability geostatistics, Water Resources Research, 1999, 35(6): 1761–1770.

    Article  Google Scholar 

  9. Dagan, G., Flow and Transport in Porous Formations, Berlin: Springer-Verlag, 1989, 15–17.

    Google Scholar 

  10. Miller, R. B., Castle, J. W., Temples, T. J., Deterministic and stochastic modeling of aquifer stratigraphy, South Carolina, Ground Water, 2000, 38(2): 284–295.

    Article  Google Scholar 

  11. Carle, S. F., Fogg, G. E., Modeling spatial variability with one- and multi-dimensional continuous Markov chains, Mathematical Geology, 1997, 29(7): 891–918.

    Article  Google Scholar 

  12. Zhang, Y., Weissmann, G. S., Fogg, G. E. et al., Effect of multi-scale heterogeneity on predictive uncertainty and groundwater age dates (abst.), AGU Annual Fall Meeting EOS Abstracts Volume, 2000, F434.

  13. Weissmann, G. S., Zhang, Y., LaBolle, E. M. et al., Modeling environmental tracer-based groundwater ages in heterogeneous aquifers, Water Resources Research, to be published.

  14. Carle, S. F., Fogg, G. E., Transition probability-based indicator geostatistics, Mathematical Geology, 1996, 28(4): 453–476.

    Article  MATH  MathSciNet  Google Scholar 

  15. Poeter, E. P., McKenna, S. A., Field example of data fusion in site characterization. Water Resources Research, 1995, 31(12): 3229–3240.

    Article  Google Scholar 

  16. Liu Jiakun, Applied Random Process, Beijing: Science Press, 2000, 105–107.

    Google Scholar 

  17. Elfeki, A., Dekking, M., A Markov chain model for subsurface characterization: Theory and applications, Mathematical Geology, 2001, 33(5): 569–589.

    Article  MATH  MathSciNet  Google Scholar 

  18. Aadland, R. K., Gellici, J. A., Thayer, P. A., Hydrogeologic framework of west-central south Carolina. Water Resources Division Reports, 1995, 1–200.

  19. Wyatt, D. E., Harris, M. K. eds., Carolina Geological Society, 2000 Field Trip Guildbook: Savannah River Site Environmental Remediation Systems in Unconsolidated Upper Coastal Plain Sediments — Stratigraphic and Structure Considerations, Aiken: Carolina Geological Society, 2000.

    Google Scholar 

  20. Weissmann, G. S., Fogg, G. E., Muitl-sale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence stratigraphic framework, Journal of Hydrology, 1999, 226(1–2): 48–65.

    Article  Google Scholar 

  21. Hutchinson, M. F., Development of a Continent-wide DEM with Applications to Terrain and Climate Analysis, Environmental Modeling with GIS (ed. Goodchild, M. F.): New York: Oxford University Press, 1993, 392–399.

    Google Scholar 

  22. Frank, H. S., Douglas, E. W., Greg, P. F., Methodology and interpretation of the piezocone penetrometer test sounding for estimating soil character and stratigraphy at the Savannah River site, in Carolina Geological Society 2000 Field Trip Guidebook, 2000, c1–c10.

  23. Carle, S. F., A transition probability-based approach to geostatistical characterization of hydrostratigraphic architecture, PH.D. Dissertation, Berkeley: University of California, 1996, 58.

    Google Scholar 

  24. Norberg, T., Rosen, L., Baran, A. et al., On modeling discrete geological structures as Markov random fields, Mathematical Geology, 2002, 34(1): 63–77.

    Article  MATH  MathSciNet  Google Scholar 

  25. Maidment, D. R., Handbook of Hydrology, New York: McGraw-Hill Inc., 1993, 6.9–6.10.

    Google Scholar 

  26. Harbaugh, A. W., McDonald, M. G., User’s documentation for MODFLOW-96, an update to the U.S. geological survey modular finite-difference ground-water flow model, U.S. Geological Survey Open-File Report, 1996, 96–485.

  27. Gelhar, L. W., Stochastic Subsurface Hydrology, New York: Prentice-Hall Inc., 1993, 202–203.

    Google Scholar 

  28. LaBolle, E. M., Fogg, G. E., Tompson, A. F. B., Random-walk simulations transport in heterogeneous porous media: local mass-conservation problem and implementation methods, Water Resources Research, 1996, 32(3): 583–593.

    Article  Google Scholar 

  29. Wen, X. H., Deutsch, C. V., Cullick, A. S., Construction of geostatistical aquifer models intergrating dynamic flow and tracer data using inverse technique, Journal of Hydrology, 2002, 255: 151–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Yong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Fogg, G.E. Simulation of multi-scale heterogeneity of porous media and parameter sensitivity analysis. Sci. China Ser. E-Technol. Sci. 46, 459–474 (2003). https://doi.org/10.1360/02ye0098

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02ye0098

Keywords

Navigation