Skip to main content
Log in

Fertilization in Torenia fournieri: Actin organization and nuclear behavior in the central cell and primary endosperm

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Studies of the living embryo sacs of Torenia fournieri reveal that the actin cytoskeleton undergoes dramatic changes that correlate with nuclear migration within the central cell and the primary endosperm. Before pollination, actin filaments appear as short bundles randomly distributed in the cortex of the central cell. Two days after anthesis, they become organized into a distinct actin network. At this stage the secondary nucleus, which is located in the central region of the central cell, possesses an associated array of short actin filaments. Soon after pollination, the actin filaments become fragmented in the micropylar end and the secondary nucleus is located next to the egg apparatus. After fertilization, the primary endosperm nucleus moves away from the egg cell and actin filaments reorganize into a prominent network in the cytoplasm of the primary endosperm. Disruption of the actin cytoskeleton with latrunculin A and cytochalasin B indicates that actin is involved in the migration of the nucleus in the central cell. Our data also suggest that the dynamics of actin cytoskeleton may be responsible for the reorganization of the central cell and primary endosperm cytoplasm during fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, B. Q., Russell, S. D., Female germ unit: organization, isolation and function, Int. Rev. Cytol., 1992, 140: 233–293.

    Article  Google Scholar 

  2. Russell, S. D., Double fertilization, Int. Rev. Cytol., 1992, 140: 357–388.

    Article  Google Scholar 

  3. Sumner, M. J., van Caeseele, L. V., The development of the central cell of Brassica campestris prior to fertilization, Can. J. Bot., 1990, 68: 2553–2563.

    Article  Google Scholar 

  4. Folsom, M. W., Cass, D. D., Embryo sac development in soybean: the central cell and aspects of fertilization, Am. J. Bot., 1992, 79: 1407–1417.

    Article  Google Scholar 

  5. Higashiyama, T., Kuroiwa, H., Kawano, S. et al., Kinetics of double fertilization in Torenia fournieri based on direct observations of the naked embryo sac, Planta, 1997, 203: 101–110.

    Article  CAS  Google Scholar 

  6. Kranz, E., von Wiegen, P., Quader, H. et al., Endosperm development after fusion of isolated, single maize sperm and central cells in vitro, Plant Cell, 1998, 10: 511–524.

    Article  PubMed  CAS  Google Scholar 

  7. Engell, K., Embryology of barley: time course and analysis of controlled fertilization and early embryo formation based on serial sections, Nord. J. Bot., 1989, 9: 265–280.

    Article  Google Scholar 

  8. Brown, R. C., Lemmon, B. E., Olsen, O. A., Endosperm development in barley: microtubule involvement in the morphogenetic pathway, Plant Cell, 1994, 6: 1241–1252.

    Article  PubMed  Google Scholar 

  9. Palevitz, B. A., Tiezzi, A., Organization, composition and function of the generative cell and sperm cytoskeleton, Int. Rev. Cytol., 1992, 140: 149–185.

    Article  Google Scholar 

  10. Pierson, E. S., Cresti, M., Cytoskeleton and cytoplasmic organization of pollen and pollen tubes, Int. Rev. Cytol., 1992, 140: 73–125.

    Article  CAS  Google Scholar 

  11. Miller, D. D., Scordilis, S. P., Hepler, P. K., Identification and localization of three classes of myosins in pollen tubes of Lilium longiflorum and Nicotiana alata, J. Cell. Sci., 1995, 108: 2549–2653.

    PubMed  CAS  Google Scholar 

  12. Heslop-Harrison, J., Heslop-Harrison, Y., Myosin associated with the surfaces of organelles, vegetative nuclei and generative cells in angiosperm pollen grains and tubes, J. Cell. Sci., 1989, 94: 319–325.

    Google Scholar 

  13. Huang, B. Q., Pierson, E. S., Russell, S. D. et al., Cytoskeletal organization and modification during pollen tube arrival, gamete delivery and fertilization in Plumbago zeylanica, Zygote, 1993, 1: 143–154.

    Article  PubMed  CAS  Google Scholar 

  14. Huang, B. Q., Russell, S. D., Fertilization in Nicotiana tabacum: Cytoskeletal modifications in the embryo sac during synergid degeneration, Planta, 1994, 194: 200–214.

    Article  CAS  Google Scholar 

  15. Huang, B. Q., Sheridan, F. W., Actin coronas in normal and indeterminate gametophyte 1 embryo sacs of maize, Sex Plant Reprod., 1998, 11: 257–264.

    Article  Google Scholar 

  16. Huang, B. Q., Fu, Y., Zee, S. Y. et al., Three-dimensional organization and dynamic changes of the actin cytoskeleton in embryo sacs of Zea mays and Torenia fournieri, Protoplasma, 1999, 209: 105–119.

    Article  PubMed  CAS  Google Scholar 

  17. Fu, Y., Yuan, M., Huang, B. Q. et al., Changes in actin organization in the living egg apparatus of Torenia fournieri during fertilization, Sex Plant Reprod., 2000, 12: 315–322.

    Article  CAS  Google Scholar 

  18. Bednara, J., Willemse, M. T. M., van Lammeren, A. A. M., Organization of the actin cytoskeleton during megasporogenesis in Gasteria verrucosa visualized with fluorescent-labeled phalloidin, Acta Bot. Neer., 1990, 39: 43–48.

    Google Scholar 

  19. Webb, M., Gunning, B. E. S., Embryo sac development in Arabidopsis thaliana II, the cytoskeleton during megagametogenesis, Sex Plant Reprod., 1994, 7: 153–163.

    Article  Google Scholar 

  20. Ye, X. L., Zee, S. Y., Yeung, E. C., Suspensor development in the Nun orchid, Phaius tankervilliae, Int. J. Plant Sci., 1997, 158: 704–712.

    Article  Google Scholar 

  21. Russell, S. D., Fertilization in Plumbago zeylanica: Entry and discharge of the pollen tube into he embryo sac, Can. J. Bot., 1982, 60: 2219–2230.

    Google Scholar 

  22. Schmit, A. C., Lambert, A. M., Microinjected fluorescent phalloidin in vivo reveals the F-actin dynamics and assembly in higher plant mitotic cells, Plant Cell, 1990, 2: 129–138.

    Article  PubMed  CAS  Google Scholar 

  23. Staiger, C. J., Yuan, M., Valenta, R. et al., Microinjected profilin affects cytoplasmic streaming in plant cells by rapidly depolymerizing actin microfilaments, Curr. Biol., 1994, 4: 215–219.

    Article  PubMed  CAS  Google Scholar 

  24. Cleary, A. L., F-actin redistribution at the division site in living Tradescantia stomatal complexs as revealed by microinjection of rhodamine-phalloidin, Protoplasma, 1995, 185: 152–165.

    Article  Google Scholar 

  25. Valster, A. H., Hepler, P. K., Caffeine inhibition of cytokinesis: effect on the phragmoplast cytoskeleton in living Tradescantia stamen hair cells, Protoplasma, 1997, 106: 155–166.

    Article  Google Scholar 

  26. Astrom, J., Sorri, O., Raudaskoski, M., Role of microtubules in the movement of the vegetative nucleus and generative cell in tobacco pollen tubes, Sex Plant Reprod., 1995, 8: 61–69.

    Article  Google Scholar 

  27. Mccurdy, D. W., Gunning, B. E. S., Reorganization of cortical actin microfilaments and microtubules at preprophase and mitosis in wheat root-tip cells: a double label immunofluorescence study, Cell Motil. Cytoskeleton, 1990, 15: 76–87.

    Article  Google Scholar 

  28. Petersen, J., Nielsen, O., Richard, E. et al., F-actin distribution and function during sexual differentiation in Schizosaccharomyces pombe, J. Cell Sci., 1998, 111: 867–876.

    PubMed  CAS  Google Scholar 

  29. Von-Dassow, G., Schubiger, G., How an actin network might cause fountain streaming and nuclear migration in the syncytial Drosophila embryo, J. Cell Biol., 1994, 127: 1637–1653.

    Article  PubMed  CAS  Google Scholar 

  30. Meindl, U., Zhang, D., Hepler, P. K., Actin microfilaments are associated with the migrating nucleus and the cell cortex in the green alga Micrasterias, J. Cell Sci., 1994, 107: 1929–1934.

    PubMed  CAS  Google Scholar 

  31. Heath, M. C., Fungal growth, haustorial disorganization and host necrosis in 2 cultivars of cowpea (Vigna sinensis) inoculated with an incompatible race of the cowpea rust fungus (Uromyces phaseoli var. vignae), Physiol. Plant Path., 1982, 21: 347–360.

    Article  Google Scholar 

  32. Herr, F. B., Heath, M. C., The effects of antimicrotubule agents on organelle positioning in the cowpea rust fungus, Uromyces phaseoli var. vignae, Exp. Mycol., 1982, 6: 15–24.

    Article  CAS  Google Scholar 

  33. Oakley, B. R., Morris, N. R., Nuclear movement is beta-tubulin-dependent in Aspergillus nidulans, Cell, 1980, 19: 255–262.

    Article  PubMed  CAS  Google Scholar 

  34. McKerracher, L. J., Heath, I. B., Microtubules around migrating nuclei in conventionally-fixed and freeze-substituted cells, Protoplasma, 1985, 125: 162–172.

    Article  Google Scholar 

  35. Vogelmann, T. C., Bassel, A. R., Miller, J. H., Effects of microtubule inhibitors on nuclear migration and rhizoid differentiation in germinating fern spores (Onoclea sensibilis), Protoplasma, 1981, 109: 295–316.

    Article  CAS  Google Scholar 

  36. Lloyd, C. W., Pearce, K. J., Rawlins, D. J. et al., Endoplasmic microtubules connect the advancing nucleus to the tip of legume root hairs, but F-actin is involved in basipetal migration, Cell Motil Cytoskeleton, 1987, 8: 27–36.

    Article  Google Scholar 

  37. Kadota, A., Wada, M., Cytoskeletal aspects of nuclear migration during tip-growth in the fern Adiantum protonemal cell, Protoplasma, 1995, 188: 170–179.

    Article  Google Scholar 

  38. Menzel, D., Jonitz, H., Elsner-Menzel, C., The perinuclear microtubule system in the green alga Acetabularia: Anchor or motility device, Protoplasma, 1996, 193: 63–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zee Sze-Yong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, M., Fu, Y., Wang, F. et al. Fertilization in Torenia fournieri: Actin organization and nuclear behavior in the central cell and primary endosperm. Sci. China Ser. C.-Life Sci. 45, 211–224 (2002). https://doi.org/10.1360/02yc9024

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02yc9024

Keywords

Navigation