Skip to main content
Log in

Control pattern of vocal center for vocalization in ruddy bunting (Emberiza rutila)

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

High vocal center (HVC) can produce single sound with one or two syllables by the single-type vocal control pattern in songbirds ruddy bunting (Emberiza rutila). It obviously shows left-side dominance in controlling double syllables, principal frequency (PF) and increasing sound intensity of the evoked calls. Meanwhile, the complex-type control pattern can produce complex calls with multisyllable, and also shows significant left-side dominance in controlling the number of syllables, tone changing and sound intensity. These indicate that left-side HVC controls higher frequency and complicated sentence structure. The basic vocal center, dorsomedial nucleus of the intercollicular complex (DM), controls the monosyllable sound in songbirds, and shows left-side dominance in controlling both the number of syllable and sound intensity. These results not only provide some direct evidence for left-side dominance in high vocal center, but also indicate that there is some internal connection between the high and basic vocal centers in songbirds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, D. F., Jiang, J. C., Li, J. et al., Effect of tracheosyringeal denervation on call in greenfinch (Carduelis sinica), Science in China, Ser. C, 1999, 42(6): 561–569.

    Article  CAS  Google Scholar 

  2. Jiang, J. C., Li, D. F., Li, J. et al., Effect of lesion of nucleus robustus archistriatalis on call in Bramble finch, Science in China, Ser. C, 2001, 44(5): 479–488.

    Article  CAS  Google Scholar 

  3. Lavenex, P. B., Vocal production mechanisms in the budgerigar (Melopsittacus undulatus): The presence and implications of amplitude modulation, J.Acoust. Soc.Am., 1999, 106(1): 491–505.

    Article  PubMed  CAS  Google Scholar 

  4. Paton, J. A., Manogue, K. R., Bilateral interactions within the vocal control pathway of birds: Two evolutionary alternatives, J. Comp. Neurol., 1982, 212(4): 329–335.

    Article  PubMed  CAS  Google Scholar 

  5. Vu, E. T., Mazurek, M. E., Duo, Y. C., Identification of a forebrain motor programming network for the learned song of zebra finches, J. Neurosci., 1994, 14: 6924–6934.

    PubMed  CAS  Google Scholar 

  6. Simpson, H. B., Vicario, D. S., Brain pathways for learned and unlearned vocalizations differ in zebra finch, J. Neurosci., 1990, 10(50): 1541–1556.

    PubMed  CAS  Google Scholar 

  7. Willams, H., Crane, L. A., Hale, T. K. et al., Right-side dominance for song control in the zebra finch, J. Neurobiol., 1992, 23(8): 1006–1020.

    Article  Google Scholar 

  8. Nottebohm, F., Plasticity in adult avian central nervous system: Possible relation between hormones, learning and brain repair. Higher functions of the nervous system, Handbook of Physiology, New York: American Physiological Society, 1987, 357–378.

    Google Scholar 

  9. Peek, F. W., Youngren, O. M., Phillips, R. E., Repetitive vocalization evoked by electrical stimulation of avian brains (IV) —Evoked and spontaneous activity in expiratory and inspiratory nerves and muscles of the chicken (Gallus gallus), Brain Behav. Evol., 1975, 12(1-2): 1–41.

    Article  PubMed  CAS  Google Scholar 

  10. Li, D. F., Lan, S. C., Location of midbrain vocal areas in two spices of oscines, Acta Northeast Normal University (Natural Sciences) (in Chinese), 1991, 1: 93–97.

    Google Scholar 

  11. Newman, J. D., Midbrain control of vocalizations in red-winged blackbirds (Agelaius phoenicens), Brain Res., 1972, 48: 227–242.

    Article  PubMed  CAS  Google Scholar 

  12. Stokes, T. M., Lionard, C. M., Nottebohm, F., The telencephalon diencephalon and mesencephalon of the canary, seinus canaria in sterotaxic coordinate, J. Comp. Neurol., 1974, 156(3): 337–374.

    Article  PubMed  CAS  Google Scholar 

  13. Perkel, D. J., Farries, M. A., Luo, M. et al., Electrophysiological analysis of a songbird basal ganglia circuit essential for vocal plasticity, Brain Res. Bull., 2002, 57(3-4): 529–532.

    Article  PubMed  Google Scholar 

  14. Li, D. F., The fiber connections of higher vocal center in zebra finch (Poephila guttata), Acta Zoologica Sinica (in Chinese), 1996, 42(4): 444.

    Google Scholar 

  15. Mooney, R., Hoese, W., Nowicki, S., Auditory representation of the vocal repertoire in a songbird with multiple song types, Proc. Natl. Acad. Sci. USA, 2001, 98(2): 12778–12783.

    Article  PubMed  CAS  Google Scholar 

  16. Wild, J. M., Arends, J. J., A respiratory-vocal pathway in the brainstem of the pigeon, Brain Res., 1987, 407(1): 191–194.

    Article  PubMed  CAS  Google Scholar 

  17. Larsen, O. N., Goller, F., Direct observation of syringeal muscle function in songbirds and a parrot, J. Exp. Biol., 2002, 205(Pt):25–35.

    PubMed  Google Scholar 

  18. Hough, G. E., Volman, S. F., Short-term and long-term effects of vocal distortion on song maintenance in zebra finches, J. Neurosci., 2002, 22(3): 1177–1186.

    PubMed  CAS  Google Scholar 

  19. Willams, H., Nottebohm, F., Auditory responses in avain vocal motor neurons: A motor theory for song perception in birds, Science, 1985, 229(4710): 279–282.

    Article  Google Scholar 

  20. Nordeen, K. W., Nordeen, E. J., Auditory feedback is necessary for the maintenance of stereotyped song in adult zebra finch, Behav. Neurol. Biol., 1992, 57(1): 58–66.

    Article  CAS  Google Scholar 

  21. Hartley, R. S., Suthers, R. A., Lateralization of syringeal function during song production in the canary, J. Neurobiol., 1990, 21(8): 1236–1248.

    Article  PubMed  CAS  Google Scholar 

  22. Li, D. F., Zuo, M. X., Cheng, L. et al., Effects of electrostimulation of midbrain on vocalization and respiratory in Quail, Zoological Research (in Chinese), 1991, 12(1): 16.

    Google Scholar 

  23. Lan, S. C., An observation on phonation, somatic motor and other responses induced by midbrain stimulation of birds in waking state, Acta Physiologica Sinica (in Chinese), 1962, 25(1): 36–41.

    Google Scholar 

  24. Reinke, H., Wild, J. M., Avian inspiratory premotor neurons: connections with respiratory and vocal nuclei, Soc. Neurosci. Abstr., 1996, 22:153.

    Google Scholar 

  25. Wild, J. M., Li, D. F., Eagleton, C., Projections of the dorsomedial nucleus of the intercollicular complex (DM) in relation to respiratory-vocal nuclei in the brainstem of pigeon (Columba livia) and zebra finch (Taeniopygia guttata), J. Comp. Neurol., 1997, 377(3): 392–413.

    Article  PubMed  CAS  Google Scholar 

  26. Reinke, H., Wild, J. M., Identification and connections of inspiratory premotor neurons in songbirds and budgerigar, J. Comp. Neurol., 1998, 391(2): 147–163.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfeng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Jiang, J. & Li, D. Control pattern of vocal center for vocalization in ruddy bunting (Emberiza rutila). Sci. China Ser. C.-Life Sci. 46, 615–622 (2003). https://doi.org/10.1360/02yc0079

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02yc0079

Keywords

Navigation