Skip to main content
Log in

Organo-Clays As Sorbents of Hydrophobic Organic Contaminants: Sorptive Characteristics and Approaches to Enhancing Sorption Capacity

  • Published:
Clays and Clay Minerals

Abstract

When clay minerals, notably smectites, intercalate organic cations, their interlayer surfaces change from hydrophilic to hydrophobic. The resultant intercalates, known as organo-clays (OCs), have a large affinity for hydrophobic organic contaminants (HOCs). Organo-clays are used as sorbents of HOCs in wastewater treatment and as sorptive barriers in landfill liners. The structural and sorptive characteristics of OCs with respect to HOCs have been studied extensively, and a large volume of literature has accumulated over the past few decades. The interactions of OCs with HOCs and the various approaches to improving the sorption capacity of OCs are reviewed here, with particular reference to the application of novel analytical techniques, such as molecular modeling, to characterizing the OC—HOC interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adebajo, M.O., Frost, R.L., Kloprogge, J.T., Carmody, O., and Kokot, S. (2003) Porous materials for oil spill cleanup: A review of synthesis and absorbing properties. Journal of Porous Materials, 10, 159–170.

    Article  Google Scholar 

  • Akkal, R., Cohaut, N., Khodja, M., Ahmed-Zaid, T., and Bergaya, F. (2013) Rheo-SAXS investigation of organoclay water in oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 751–762.

    Article  Google Scholar 

  • Alkaram, U.F., Mukhlis, A.A., and Al-Dujaili, A.H. (2009) The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. Journal of Hazardous Materials, 169, 324–332.

    Article  Google Scholar 

  • Alther, G.R. (1995) Organically modified clay removes oil from water. Waste Management, 15, 623–628.

    Article  Google Scholar 

  • Alther, G.R. (2002) Using organo clays to enhance carbon filtration. Waste Management, 22, 507–513.

    Article  Google Scholar 

  • Bailey, S.E., Olin, T.J., Bricka, R.M., and Adrian, D. (1999) A review of potential low-cost sorbents for heavy metals. Water Research, 33, 2469–2479.

    Article  Google Scholar 

  • Barrer, R.M. (1978) Zeolites and Clay Minerals as Sorbents and Molecular Sieves. Academic Press, London.

    Google Scholar 

  • Bartelt-Hunt, S.L., Burns, S.E., and Smith, J.A. (2003) Nonionic organic solute sorption onto two organobentonites as a function of organic-carbon content. Journal of Colloid and Interface Science, 266, 251–258.

    Article  Google Scholar 

  • Bartelt-Hunt, S.L., Smith, J.A., Burns, S.E., and Rabideau, A.J. (2005) Evaluation of granular activated carbon, shale and two organoclays for use as sorptive amendments in clay landfill liners. Journal of Geotechnical and Geoenvironmental Engineering, 131, 848–856

    Article  Google Scholar 

  • Beall, G.W. (2003) The use of organo-clays in water treatment. Applied Clay Science, 24, 11–20.

    Article  Google Scholar 

  • Bergaya, F. and Lagaly, G. (2013) Handbook of Clay Science, 2nd edition. Elsevier, Amsterdam.

    Google Scholar 

  • Bergaya, F., Detellier, C., Lambert, J.F., and Lagaly, G. (2013) Introduction to clay-polymer nanocomposites (CPN). Pp. 655–678 in: Handbook of Clay Science, Part A, 2nd edition (F. Bergaya and G. Lagaly, editors). Elsevier, Amsterdam.

    Google Scholar 

  • Bonczek, J.L., Harris, W.G., and Nkedi-Kizza, P. (2002) Monolayer to bilayer transitional arrangements of hexadecyltrimethylammonium cations on Na-montmorillonite. Clays and Clay Minerals, 50, 11–17.

    Article  Google Scholar 

  • Borisover, M., Bukhanovsky, N., Lapides, I., and Yariv, S. (2010a) Mild pre-heating of organic cation-exchanged clays enhances their interactions with nitrobenzene in aqueous environment. Adsorption, 16, 223–232.

    Article  Google Scholar 

  • Borisover, M., Bukhanovsky, N., Lapides, I., and Yariv, S. (2010b) Thermal treatment of organoclays: Effect on the aqueous sorption of nitrobenzene on n-hexadecyltrimethyl ammonium montmorillonite. Applied Surface Science, 256, 5539–5544.

    Article  Google Scholar 

  • Borisover, M., Bukhanovsky, N., Lapides, I., and Yariv, S. (2012) The potential of thermally treated organobentonites to adsorb organic compounds from water. Applied Clay Science, 67-68, 151–157.

    Article  Google Scholar 

  • Boyd, S.A., Mortland, M.M., and Chiou, C.T. (1988a) Sorption characteristics of organic compounds on hexadecyltrimethylammonium-smectite. Soil Science Society of America Journal. 52, 652–657.

    Article  Google Scholar 

  • Boyd, S.A., Sun, S., Lee, J.F., and Mortland, M.M. (1988b) Pentachlorophenol sorption by organo-clays. Clays and Clay Minerals, 36, 125–130.

    Article  Google Scholar 

  • Brigatti, M.F., Galán, E., and Theng, B.K.G. (2013) Structure and mineralogy of clay minerals. Pp. 21–82 in: Handbook of Clay Science, Part A, 2nd edition (F. Bergaya and G. Lagaly editors). Elsevier, Amsterdam.

    Google Scholar 

  • Čapková, P., Pospíšil, M., and Weiss, Z. (2003) Combination of modeling and experiment in structure analysis of intercalated layer silicates. Journal of Molecular Modeling, 9, 195–205.

    Article  Google Scholar 

  • Carmody, O., Frost, R., Xi, Y., and Kokot, S. (2007) Adsorption of hydrocarbons on organoclays — implications for oil spill remediation. Journal of Colloid and Interface Science, 305, 17–24.

    Article  Google Scholar 

  • Carvalho, M.N., Da Motta, M., Benachour, M., Sales, D.C.S., and Abreu, C.A.M. (2012) Evaluation of BTEX and phenol removal from aqueous solution by multi-solute adsorption onto smectite organoclay. Journal of Hazardous Materials, 239, 95–101.

    Article  Google Scholar 

  • Changchaivong, S. and Khaodhiar, S. (2009) Adsorption of naphthalene and phenanthrene on dodecylpyridinium-modified bentonite. Applied Clay Science, 43, 317–321.

    Article  Google Scholar 

  • Chappell, M.A., Laird, D.A., Thompson, M.L., Li, H., Teppen, B.J., Aggarwal, V., Johnston, C.T., and Boyd, S.A. (2005) Influence of smectite hydration and swelling on atrazine sorption behavior. Environmental Science & Technology, 39, 3150–3156.

    Article  Google Scholar 

  • Chen, B. and Zhu, L. (2001) Partition of polycyclic aromatic hydrocarbons on organobentonites from water. Journal of Environmental Sciences, 13, 129–136.

    Google Scholar 

  • Chen, B., Zhu, L., and Zhu, J. (2005) Configurations of the bentonite-sorbed myristylpyridinium cation and their influences on the uptake of organic compounds. Environmental Science & Technology, 39, 6093–6100.

    Article  Google Scholar 

  • Chen, B., Evans, J.R.G., Greenwell, H.C., Boulet, P., Coveney, P.V., Bowden, A.A., and Whiting, A. (2008) A critical appraisal of polymer—clay nanocomposites. Chemical Society Reviews, 37, 568–594.

    Article  Google Scholar 

  • Chiou, C.T. (2002) Partition and Adsorption of Organic Contaminants in Environmental Systems. Wiley-Interscience, Hoboken, New Jersey, USA.

    Book  Google Scholar 

  • Chiou, C.T., Peters, L.J., and Freed, V.H. (1979) A physical concept of soil-water equilibria for nonionic organic compounds. Science, 206, 831–832

    Article  Google Scholar 

  • Chiou, C.T., Peters, L.J., and Freed, V.H. (1981) Soil-water equilibria for nonionic organic compounds. Science, 213, 683–684

    Article  Google Scholar 

  • Chun, Y.G., Sheng, G., and Boyd, S.A. (2003) Sorptive characteristics of tetraalkylammonium-exchanged smectite clays. Clays and Clay Minerals, 51, 415–420.

    Article  Google Scholar 

  • Churchman, G.J., Gates, W.P., Theng B.K.G., and Yuan, G. (2006) Clays and clay minerals for pollution control. Pp. 625–676 in: Handbook of Clay Science (F. Bergaya, B.K.G. Theng, and G. Lagaly, editors). Elsevier, Amsterdam.

    Google Scholar 

  • Cruz-Guzman, M., Cells, R., Hermosín, M.C., and Cornejo, J. (2004) Adsorption of the herbicide simazine by montmorillonite modified with natural organic cations. Environmental Science & Technology, 38, 180–186.

    Article  Google Scholar 

  • Cygan, R.T., Liang, J.J., and Kalinichev, A.G. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108, 1255–1266.

    Article  Google Scholar 

  • de Paiva, L.B., Morales, A.R., and Valenzuela Diaz, F.R. (2008) Organoclays: properties, preparation and applications. Applied Clay Science, 42, 8–24.

    Article  Google Scholar 

  • Dentel, S.K., Jamrah, A.J., and Sparks, D.L. (1998) Sorption and cosorption of 1,2,4-trichlorobenzene and tannic acid by organo-clays. Water Research, 32, 3689–3697.

    Article  Google Scholar 

  • Fischer, D., Caseri, W.R., and Hähner, G. (1998) Orientation and electronic structure of ion exchanged dye molecules on mica: An X-ray absorption study. Journal of Colloid and Interface Science, 198, 337–346.

    Article  Google Scholar 

  • Fu, Y.T. and Heinz, H. (2010a) Cleavage energy of alkylammonium-modified montmorillonite and the relation to exfoliation in nanocomposites: influence of cation density, head group structure, and chain length. Chemistry of Materials, 22, 1595–1605.

    Article  Google Scholar 

  • Fu, Y.T. and Heinz, H. (2010b) Structure and cleavage energy of surfactant-modified clay minerals: Influence of CEC, head group and chain length. Philosophical Magazine, 90, 2415–2424.

    Article  Google Scholar 

  • Gates, W.P., Bauazza, A., and Churchman, G.J. (2009) Bentonite clay keeps pollutants at bay. Elements, 5, 105–110.

    Article  Google Scholar 

  • Galimberti, M., Cipolletti, V.R., and Coombs, M. (2013) Applications of clay-polymer nanocomposites. Pp. 539–586 in: Handbook of Clay Science, Part B, 2nd edition (F. Bergaya and G. Lagaly, editors). Elsevier, Amsterdam.

    Google Scholar 

  • Greathouse, J. and Cygan, R.T. (2013) Molecular simulation of clay minerals. Pp. 405–424 in: Handbook of Clay Science, Part B, 2nd edition (F. Bergaya and G. Lagaly, editors). Elsevier, Amsterdam.

    Google Scholar 

  • Groisman, L.C., Rav-Acha, C., Gerstl, Z., and Mingelgrin, U. (2004a) Sorption of organic compounds of varying hydrophobicities from water and industrial wastewater by long- and short-chain organoclays. Applied Clay Science, 24, 159–166.

    Article  Google Scholar 

  • Groisman, L.C., Rav-Acha, C., Gerstl, Z., and Mingelgrin, U. (2004b) Sorption and detoxification of toxic compounds by a bifunctional organoclay. Journal of Environmental Quality, 33, 1930–1936.

    Article  Google Scholar 

  • Gupta, S.S. and Bhattacharyya, K.G. (2012) Adsorption of heavy metals on kaolinite and montmorillonite: a review. Physical Chemistry Chemical Physics, 14, 6698–6723.

    Article  Google Scholar 

  • Gupta, V.K. and Suhas (2009) Application of low-cost adsorbents for dye removal — A review. Journal of Environmental Management, 90, 2313–2342.

    Article  Google Scholar 

  • Hähner, G., Marti, A., Spencer, N.D., Brunner, S., Caseri, W.R., and Suter, U.W. (1996a) Self-assembled layers of substituted poly(p-phenylene)s on gold and copper investigated by soft X-ray spectroscopy. Langmuir, 12, 719–725.

    Article  Google Scholar 

  • Hähner, G., Marti, A., Spencer, N.D., and Caseri, W.R. (1996b) Orientation and electronic structure of methylene blue on mica: A near edge X-ray absorption fine structure spectroscopy study. Journal of Chemical Physics, 104, 7749–7757.

    Article  Google Scholar 

  • He, H., Guo, J., Xie, X., and Pen, J. (2001) Location and migration of cations in Cu2+-adsorbed montmorillonite. Environment International, 26, 347–352.

    Article  Google Scholar 

  • He, H., Frost, R.L., and Zhu, J. (2004a) Infrared study of HDTMA+ intercalated montmorillonite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60 (12), 2853–2859.

    Article  Google Scholar 

  • He, H., Frost, R.L., Xi, Y., and Zhu, J. (2004b) Raman spectroscopic study of organo-montmorillonites. Journal of Raman Spectroscopy, 35, 316–323.

    Article  Google Scholar 

  • He, H., Frost, R.L., Deng, F., Zhu, J., Wen, X., and Yuan, P. (2004c) Conformation of surfactant molecules in the interlayer of montmorillonite studied by 13C MAS-NMR. Clays and Clay Minerals, 52, 350–356

    Article  Google Scholar 

  • He, H., Ding, Z., Zhu, J., Yuan, P., Xi, Y., Yang, D., and Frost, R.L. (2005a) Thermal characterization of surfactant-modified montmorillonites. Clays and Clay Minerals, 53, 287–293.

    Article  Google Scholar 

  • He, H., Galy, J., and Gerard, J.F. (2005b) Molecular simulation of the interlayer structure and the mobility of alkyl chains in HDTMA+/montmorillonite hybrids. Journal of Physical Chemistry B, 109, 13301–13306.

    Article  Google Scholar 

  • He, H., Frost, R.L, Bostrom, T., Yuan, P., Duong, L., Yang, D., Xi, Y., and Kloprogge, J.T. (2006a) Changes in the morphology of organoclays with HDTMA+ surfactant loading. Applied Clay Science, 31, 262–271.

    Article  Google Scholar 

  • He, H., Zhou, Q., Martens, W.N., Kloprogge, J.T., Yuan, P., Xi, Y., Zhu, J., and Frost, R.L. (2006b) Microstructure of HDTMA(+)-modified montmorillonite and its influence on sorption characteristics. Clays and Clay Minerals, 54, 689–696.

    Article  Google Scholar 

  • He, H., Ma, Y., Zhu, J., Yuan, P., and Qing, Y. (2010) Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied Clay Science, 48, 67–72.

    Article  Google Scholar 

  • He, H., Tao, Q., Zhu, J., Yuan, P., Shen, W., and Yang, S. (2013) Silylation of clay mineral surfaces. Applied Clay Science, 71, 15–20.

    Article  Google Scholar 

  • He, H., Ma, L., Zhu, J., Frost, R.L., Theng, B.K.G., and Bergaya, F. (2014) Synthesis of organoclays: A critical review and some unresolved issues. Applied Clay Science. 100, 22–28.

    Article  Google Scholar 

  • Heinz, H., Koerner, H., Anderson, K.L., Vaia, R.A., and Farmer, B.L. (2005) Force field for mica-type silicates and dynamics of octadecylammonium chains grafted to montmorillonite. Chemistry of Materials, 17, 5658–5669.

    Article  Google Scholar 

  • Heinz, H., Vaia, R.A., Krishnamoorti, R., and Farmer, B.L. (2007) Self-assembly of alkylammonium chains on montmorillonite: effect of chain length, head group structure, and cation exchange capacity. Chemistry of Materials, 19, 59–68.

    Article  Google Scholar 

  • Hofmann, U. and Klemen, R. (1950) Verlust der austauschfähigkeit von lithiumionen an bentonit durch erhitzung. Zeitschrift für anorganische und allgemeine Chemie, 262, 95–99.

    Article  Google Scholar 

  • Hrobarikova, J., Madejová, J., and Komadel, P. (2001) Effect of heating temperature on Li fixation, layer charge and properties of fine fractions of bentonites. Journal of Materials Chemistry, 11, 1452–1457.

    Article  Google Scholar 

  • Huang, R.H., Zheng, D.S., Yang, B.C., and Wang, B. (2012) Preparation and simultaneous sorption of CTMAB-HTCC bentonite towards phenol and Cd(II). Desalination and Water Treatment, 44, 276–283.

    Article  Google Scholar 

  • Janeba, D., Čapková, P., and Weiss, Z. (1998) Molecular mechanics studies of montmorillonite intercalated with tetramethylammonium and trimethylphenylammonium. Journal of Molecular Modeling, 4, 176–182.

    Article  Google Scholar 

  • Jaynes, W.F. and Boyd, S.A. (1990) Trimethylphenylammonium-smectite as an effective adsorbent of water soluble aromatic hydrocarbons. Journal of the Air and Waste Management Association, 40, 1649–1653.

    Article  Google Scholar 

  • Jaynes, W.F. and Boyd, S.A. (1991a) Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water. Clays and Clay Minerals, 39, 428–436.

    Article  Google Scholar 

  • Jaynes, W.F. and Boyd, S.A. (1991b) Clay mineral type and organic compound sorption by hexadecyltrimethylammonium-exchanged clays. Soil Science Society of America Journal, 55, 43–48.

    Article  Google Scholar 

  • Jaynes, W.F. and Vance, G.F. (1996) BTEX sorption by organo-clays: cosorptive enhancement and equivalence of interlayer complexes. Soil Science Society of America Journal, 60, 1742–1749.

    Article  Google Scholar 

  • Jaynes, W.F. and Vance, G.F. (1999) Sorption of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds by hectorite clays exchanged with aromatic organic cations. Clays and Clay Minerals, 47, 358–365.

    Article  Google Scholar 

  • Jaynes, W.F., Traina, S.J., Bigham, J.M., and Johnston, C.T. (1992) Preparation and characterization of reduced-charge hectorites. Clays and Clay Minerals, 40, 397–404.

    Article  Google Scholar 

  • Juang, R.S., Lin, S.H., and Tsao, K.H. (2002) Mechanism of sorption of phenols from aqueous solutions onto surfactant-modified montmorillonite. Journal of Colloid and Interface Science, 254, 234–241.

    Article  Google Scholar 

  • Kameda, T., Shimamori, S., and Yoshioka, T. (2012) Specific uptake of aromatic compounds from aqueous solution by montmorillonite modified with tetraphenylphosphonium. Journal of Physics and Chemistry of Solids, 73, 120–123.

    Article  Google Scholar 

  • Khenifi, A., Zohra, B., Kahina, B., Houari, H., and Zoubir, D. (2009) Removal of 2,4-DCP from wastewater by CTAB/bentonite using one-step and two-step methods: A comparative study. Chemical Engineering Journal, 146, 345–354.

    Article  Google Scholar 

  • Ko, C.H., Fan, C., Chiang, P.N., Wang, M.K., and Lin, K.C. (2007) p-Nitrophenol, phenol and aniline sorption by organo-clays. Journal of Hazardous Materials, 149, 275–282.

    Article  Google Scholar 

  • Komadel, P. (2003) Chemically modified smectites. Clay Minerals, 38, 127–138.

    Article  Google Scholar 

  • Komadel, P., Madejová, J., and Bujdak, J. (2005) Preparation and properties of reduced-charge smectites: a review. Clays and Clay Minerals, 53, 313–334.

    Article  Google Scholar 

  • Kukkadapu, R.K. and Boyd, S.A. (1995) Tetramethylphosphonium- and tetramethylammonium-smectites as adsorbents of aromatic and chlorinated hydrocarbons: effect of water on adsorption efficiency. Clays and Clay Minerals, 43, 318–323.

    Article  Google Scholar 

  • Kwolek, T., Hodorowicz, M., Stadnicka, K., and Czapkiewicz, J. (2003) Adsorption isotherms of homologous alkyldimethylbenzylammonium bromides on sodium montmorillonite. Journal of Colloid and Interface Science, 264, 14–19.

    Article  Google Scholar 

  • Lagaly, G. (1976) Kink-block and gauche-block structures of bimolecular films. Angewandte Chemie International Edition, 15, 575–586.

    Article  Google Scholar 

  • Lagaly, G., Ogawa, M., and Dekany, I. (2013) Clay mineralorganic interactions. Pp. 435–506 in: in: Handbook of Clay Science, Part B, 2nd edition (F. Bergaya and G. Lagaly, editors). Elsevier, Amsterdam.

    Google Scholar 

  • Lawrence, M.A.M., Kukkadapu, R.K., and Boyd, S.A. (1998) Adsorption of phenol and chlorinated phenols from aqueous solution by tetramethylammonium- and tetramethylphosphonium-exchanged montmorillonite. Applied Clay Science, 13, 12–20.

    Article  Google Scholar 

  • Lee, J.F., Mortland, M.M., Kile, D.E., Boyd, S.A., and Chiou, C.T. (1989) Shape-selective adsorption of aromatic molecules from water by tetramethylammonium-smectite. Journal of the Chemical Society, Faraday Transactions, 1 (85), 2953–2962.

    Article  Google Scholar 

  • Lee, J.F., Mortland, M.M., Chiou, C.T., Kile, D.E., and Boyd, S.A. (1990) Adsorption of benzene, toluene, and xylene by two tetramethylammonium-smectites having different charge densities. Clays and Clay Minerals, 38, 113–120.

    Article  Google Scholar 

  • Lee, S.M. and Tiwari, D. (2012) Organo and inorgano-organomodified clays in the remediation of aqueous solutions: An overview. Applied Clay Science, 59–60, 84–102.

    Article  Google Scholar 

  • Lee, S.Y., Kim, S.J., Chung, S.Y., and Jeong, C.H. (2004) Sorption of hydrophobic organic compounds onto organoclays. Chemosphere, 55, 781–785.

    Article  Google Scholar 

  • Li, H., Teppen, B.J., Johnston, C.T., and Boyd, S.A. (2004) Thermodynamics of nitroaromatic compounds adsorption from water by smectite clay. Environmental Science & Technology, 38, 5433–5442.

    Article  Google Scholar 

  • Li, Z., Yao, M., Lin, J., Yang, B., Zhang, X., and Lei, L. (2013) Pentachlorophenol sorption in the cetyltrimethylammonium bromide/bentonite one-step process in single and multiple solute systems. Journal of Chemical and Engineering Data, 58, 2610–2615.

    Article  Google Scholar 

  • Liu, X., Lu, X., Wang, R., and Zhou, H. (2007) Interlayer structure and dynamics of alkylammonium-intercalated smectites with and without water: A molecular dynamics study. Clays and Clay Minerals, 55, 554–564.

    Article  Google Scholar 

  • Liu, X., Lu, X., Wang, R., Zhou, H., and Xu, S. (2009) Molecular dynamics insight into the cointercalation of hexadecyltrimethyl-ammonium and acetate ions into smectites. American Mineralogist, 94, 143–150.

    Article  Google Scholar 

  • Lo, I.M.C. (2001) Organoclay with soil-bentonite admixture as waste containment barriers. Journal of Environmental Engineering-ASCE, 127(8), 756–759.

    Article  Google Scholar 

  • Lo, I.M.C. and Yang, X. (2001) Laboratory investigation of the migration of hydrocarbons in organobentonite. Environmental Science & Technology, 35, 620–625.

    Article  Google Scholar 

  • Ma, J. and Zhu, L. (2006) Simultaneous sorption of phosphate and phenanthrene to inorgano-organo-bentonite from water. Journal of Hazardous Materials, 136, 982–988.

    Article  Google Scholar 

  • Ma, J. and Zhu, L. (2007) Removal of phenols from water accompanied with synthesis of organobentonite in one-step process. Chemosphere, 68, 1883–1888.

    Article  Google Scholar 

  • Marry, V., Rotenberg, B., and Turq, P. (2008) Structure and dynamics of water at a clay surface from molecular dynamics simulation. Physical Chemistry Chemical Physics, 10, 4802–4813.

    Article  Google Scholar 

  • Marry, V., Dubois, E., Malikova, N., Durand-Vidal, S., Longeville, S., and Breu, J. (2011) Water dynamics in hectorite clays: Influence of temperature studied by coupling neutron spin echo and molecular dynamics. Environmental Science & Technology, 45, 2850–2855.

    Article  Google Scholar 

  • McBride, M.B., Pinnavaia, T.J., and Mortland, M.M. (1975) Adsorption of aromatic molecules by clays in aqueous suspension. Preprints of papers presented at the National Meeting of the American Chemical Society. Division of Environmental Chemistry, 15(1), 44–46.

    Google Scholar 

  • Meier, L.P., Nueesch, R., and Madsen, F.T. (2001) Organic pillared clays. Journal of Colloid and Interface Science, 238, 24–32.

    Article  Google Scholar 

  • Mortland, M.M. (1970) Clay-organic complexes and interactions. Advances in Agronomy, 22, 75–117.

    Article  Google Scholar 

  • Mortland, M.M., Sun, S., and Boyd, S.A. (1986) Clay-organic complexes as adsorbents for phenol and chlorophenols. Clays and Clay Minerals, 34, 581–585.

    Article  Google Scholar 

  • Martos-Villa, R., Guggenheim, S., and Sainz-Diaz, C.I. (2013) Interlayer water molecules in organocation-exchanged vermiculite and montmorillonite: A case study of tetramethylammonium. American Mineralogist, 98, 1535–1542.

    Article  Google Scholar 

  • Nafees, M. and Waseem, A. (2014) Organoclays as sorbent material for phenolic compounds: A review. Clean-Soil Air Water, 41, 1–9.

    Google Scholar 

  • Nguyen, V.N., Nguyen, T.D.C., Dao, T.P., Tran, H.T., Nguyen, D.B., and Ahn, D.H. (2013) Synthesis of organoclays and their application for the adsorption of phenolic compounds from aqueous solution. Journal of Industrial and Engineering Chemistry, 19, 640–644.

    Article  Google Scholar 

  • Nzengung, V.A., Voudrias, E.A., Nkedi-Kizza, P., Wampler, J.M., and Weaver, C.E. (1996) Organic cosolvent effects on sorption equilibrium of hydrophobic organic chemicals by organoclays. Environmental Science & Technology, 30, 89–96.

    Article  Google Scholar 

  • Okada, T., Seki, Y., and Ogawa, M. (2014) Designed nanostructures of clay for controlled adsorption of organic compounds. Journal of Nanoscience and Nanotechnology, 14, 2121–2134.

    Article  Google Scholar 

  • Osman, M.A., Ploetze, M., and Skrabal, P. (2004) Structure and properties of alkylammonium monolayers selfassembled on montmorillonite platelets. Journal of Physical Chemistry B, 108, 2580–2588.

    Article  Google Scholar 

  • Park, Y., Ayoko, G.A., and Frost, R.L. (2011) Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media. Journal of Colloid and Interface Science, 354, 292–305.

    Article  Google Scholar 

  • Polubesova, T., Zadaka, D., Groisman, L., and Nir, S. (2006) Water remediation by micelle clay system: case study for tetracycline and sulfonamide antibiotics. Water Research, 40, 2369–2374.

    Article  Google Scholar 

  • Praus, P., Veteska, M., and Pospíšil, M. (2011) Adsorption of phenol and aniline on natural and organically modified montmorillonite: experiment and molecular modelling. Molecular Simulation, 37, 964–974.

    Article  Google Scholar 

  • Prost, R. and Yaron, B. (2001) Use of modified clays for controlling soil environmental quality. Soil Science, 166, 880–895.

    Article  Google Scholar 

  • Qu, X., Liu, P., and Zhu, D. (2008) Enhanced sorption of polycyclic aromatic hydrocarbons to tetra-alkyl ammonium modified smectites via cation-π interactions. Environmental Science & Technology, 42, 1109–1116.

    Article  Google Scholar 

  • Quirk, J.P. and Theng, B.K.G. (1960) Effect of surface density of charge on the physical swelling of lithium montmorillonite. Nature, 187, 967–968.

    Article  Google Scholar 

  • Rawajfih, Z. and Nsour, N. (2006) Characteristics of phenol and chlorinated phenol sorption onto surfactant-modified bentonite. Journal of Colloid and Interface Science, 298, 39–49.

    Article  Google Scholar 

  • Redding, A.Z., Burns, S.E., Upson, R.T., and Anderson, E.F. (2002) Organoclay sorption of benzene as a function of total organic carbon content. Journal of Colloid and Interface Science, 250, 261–264.

    Article  Google Scholar 

  • Ruan, X., Zhu, L., and Chen, B. (2008) Adsorptive characteristics of the siloxane surfaces of reduced-charge bentonites saturated with tetramethylammonium cation. Environmental Science & Technology, 42, 7911–7917.

    Article  Google Scholar 

  • Ruiz-Hitzky, E., Aranda, P., Darder, M., and Rytwo, G. (2010) Hybrid materials based on clays for environmental and biomedical applications. Journal of Materials Chemistry, 20, 9306–9321.

    Article  Google Scholar 

  • Rutherford, D.W., Chiou, C.T., and Eberl, D.D. (1997) Effects of exchanged cations on the microporosity of montmorillonite. Clays and Clay Minerals, 45, 534–543.

    Article  Google Scholar 

  • Rytwo, G. and Gonen, Y. (2006) Very fast sorbent for organic dyes and pollutants. Colloid and Polymer Science, 284, 817–820.

    Article  Google Scholar 

  • Rytwo, G., Kohavi, Y., Botnick, I., and Gonen, Y. (2007) Use of CV- and TPP-montmorillonite for the removal of priority pollutants from water. Applied Clay Science, 36, 182–190.

    Article  Google Scholar 

  • Sandi, G., Thiyagarajan, P., Carrado, K.A., and Winans, R. E. (1999) Small angle neutron scattering characterization of the porous structure of carbons prepared using inorganic templates. Chemistry of Materials, 11, 235–240

    Article  Google Scholar 

  • Sarkar, B., Xi, Y., Megharaj, M., Krishnamurti, G.S.R., Bowman, M., Rose, H., and Naidu, R. (2012) Bioreactive organoclay: A new technology for environmental remediation. Critical Reviews in Environmental Science & Technology, 42, 435–488.

    Article  Google Scholar 

  • Scholtzova, E., Tunega, D., Madejová, J., Palkova, H., and Komadel, P. (2013) Theoretical and experimental study of montmorillonite intercalated with tetramethylammonium cation. Vibrational Spectroscopy, 66, 123–131.

    Article  Google Scholar 

  • Shapley, T.V., Molinari, M., Zhu, R., and Parker, S.C. (2013) Atomistic modeling of the sorption free energy of dioxins at clay-water interfaces. Journal of Physical Chemistry C, 117, 24975–24984.

    Article  Google Scholar 

  • Shen, Y.H. (2002) Removal of phenol from water by adsorption flocculation using organobentonite. Water Research, 36, 1107–1114.

    Article  Google Scholar 

  • Shen, Y.H. (2004) Phenol sorption by organoclays having different charge characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 232, 143–149.

    Article  Google Scholar 

  • Sheng, G., and Boyd, S.A. (1998) Relation of water and neutral organic compounds in the interlayers of mixed Ca/Trimethylphenylammonium-smectite. Clays and Clay Minerals, 46, 10–17.

    Article  Google Scholar 

  • Sheng, G., Xu, S., and Boyd, S.A. (1999) A dual function organoclay sorbent for lead and chlorobenzene. Soil Science Society of America Journal, 63, 73–78.

    Article  Google Scholar 

  • Sheng, G. and Boyd, S.A. (2000) Polarity effect on dichlorobenzene sorption by hexadecyltrimethylammonium-exchanged clays. Clays and Clay Minerals, 48, 43–50.

    Article  Google Scholar 

  • Sheng, G., Xu, S., and Boyd, S.A. (1996a) Mechanism controlling sorption of neutral organic contaminants by surfactant-derived and natural organic matter. Environmental Science & Technology, 30, 1553–1557

    Article  Google Scholar 

  • Sheng, G., Xu, S., and Boyd, S.A. (1996b) Cosorption of organic contaminants from water by hexadecyltrimethylammonium exchanged clays. Water Research, 30, 1483–1489.

    Article  Google Scholar 

  • Sheng, G., Xu, S., and Boyd, S.A. (1997) Surface heterogeneity of trimethylphenylammonium-smectite as revealed by adsorption of aromatic hydrocarbons from water. Clays and Clay Minerals, 45, 659–669.

    Article  Google Scholar 

  • Slade, P.G. and Gates, W.P. (2004a) The swelling of HDTMA smectites as influenced by their preparation and layer charges. Applied Clay Science, 25, 93–669.

    Article  Google Scholar 

  • Slade, P.G. and Gates, W.P. (2004a) The swelling of HDTMA smectites as influenced by their preparation and layer charges. Applied Clay Science, 25, 93–139.

    Article  Google Scholar 

  • Slade, P.G. and Gates, W.P. (2007) HDTMA in the interlayers of high-charged Llano vermiculite. Clays and Clay Minerals, 55, 131–139.

    Article  Google Scholar 

  • Smith, J.A. and Galán, A. (1995) Sorption of nonionic contaminants to single and dual organic cation bentonites from water. Environmental Science & Technology, 29, 685–692.

    Article  Google Scholar 

  • Smith, J.A., Jaffe, P.R., and Chiou, C.T. (1990) Effect of 10 quaternary ammonium cations on tetrachloromethane sorption to clay from water. Environmental Science & Technology, 24, 1167–1172.

    Article  Google Scholar 

  • Smith, J.A., Bartelt-Hunt, S.L., and Burns, S.E. (2003) Sorption and permeability of gasoline hydrocarbons in organobentonite porous media. Journal of Hazardous Materials, 96(1), 91–97.

    Article  Google Scholar 

  • Sposito, G. and Prost, R. (1982) Structure of water adsorbed on smectites. Chemical Reviews, 82, 553–573.

    Article  Google Scholar 

  • Sposito, G., Skipper, N.T., Sutton, R., Park, S.H., Soper, A.K., and Greathouse, J.A. (1999) Surface geochemistry of the clay minerals. Proceedings of the National Academy of Sciences of the United States of America, 96, 3358–573.

    Article  Google Scholar 

  • Sposito, G., Skipper, N.T., Sutton, R., Park, S.H., Soper, A.K., and Greathouse, J.A. (1999) Surface geochemistry of the clay minerals. Proceedings of the National Academy of Sciences of the United States of America, 96, 3358–309.

    Article  Google Scholar 

  • Stevens, J.J., Anderson, S.J., and Boyd, S.A. (1996) FTIR study of competitive water-arene sorption on tetramethylammonium- and trimethylphenylammonium-montmorillonites. Clays and Clay Minerals, 44, 88–95.

    Article  Google Scholar 

  • Theng, B.K.G. (1974) The Chemistry of Clay—Organic Reactions. Adam Hilger, London.

    Google Scholar 

  • Theng, B.K.G., Churchman, G.J., Gates, W.P., and Yuan, G. (2008) Organically modified clays for pollution uptake and environmental protection. Pp. 145–174 in: Soil Mineral—Microbe—Organic Interactions: Theories and Applications (Q. Huang, P.M. Huang and A. Violante, editors). Springer-Verlag, Berlin.

    Google Scholar 

  • Theng, B.K.G., Hayashi, S., Soma, M., and Seyama, H. (1997) Nuclear magnetic resonance and X-ray photoelectron spectroscopic investigation of lithium migration in montmorillonite. Clays and Clay Minerals, 45, 718–723.

    Article  Google Scholar 

  • Upson, R.T. and Burns, S.E. (2006) Sorption of nitroaromatic compounds to synthesized organo clays. Journal of Colloid and Interface Science, 297, 70–76.

    Article  Google Scholar 

  • Vaia, R.A., Teukolsky, R.K., and Giannelis, E.P. (1994) Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials, 6, 1017–1022.

    Article  Google Scholar 

  • Wang, C.C., Juang, L.C., Lee, C.K., Hsu, T.C., Lee, J.F., and Chao, H.P. (2004) Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. Journal of Colloid and Interface Science, 280, 27–1022.

    Article  Google Scholar 

  • Wang, C.C., Juang, L.C., Lee, C.K., Hsu, T.C., Lee, J.F., and Chao, H.P. (2004) Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. Journal of Colloid and Interface Science, 280, 27–1084.

    Article  Google Scholar 

  • Wei, J., Zhu, R., Zhu, J., Ge, F., Yuan, P., He, H., and Chen, M. (2009) Simultaneous sorption of crystal violet and 2-naphthol to bentonite with different CECs. Journal of Hazardous Materials, 166, 195–199.

    Article  Google Scholar 

  • Xi, Y., Frost, R.L., He, H., Kloprogge, T., and Bostrom, T. (2005) Modification of Wyoming montmorillonite surface using a cationic surfactant. Langmuir, 21, 8675–8680.

    Article  Google Scholar 

  • Xi, Y., Frost, R.L., and He, H. (2007) Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methyl ammonium bromides. Journal of Colloid and Interface Science, 305, 150–158.

    Article  Google Scholar 

  • Xi, Y., Mallavarapu, M., and Naidu, R. (2010) Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Applied Clay Science, 48, 92–96.

    Article  Google Scholar 

  • Xie, W., Gao, Z., Pan, W.P., Hunter, D., Singh, A., and Vaia, R. (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chemistry of Materials, 13, 2979–2990.

    Article  Google Scholar 

  • Xiong, Z., Xu, Y., Zhu, L., and Zhao, J. (2005a) Photosensitized oxidation of substituted phenols on aluminum phthalocyanine-intercalated organoclay. Environmental Science & Technology, 39, 651–657

    Article  Google Scholar 

  • Xiong, Z., Xu, Y., Zhu, L., and Zhao, J. (2005b) Enhanced photodegradation of 2,4, 6-trichlorophenol over palladium phthalocyaninesulfonate modified organobentonite. Langmuir, 21, 10602–10607.

    Article  Google Scholar 

  • Xu, S. and Boyd, S.A. (1995) Cationic surfactant adsorption by swelling and nonswelling layer silicates. Langmuir, 11, 2508–2514.

    Article  Google Scholar 

  • Xu, L. and Zhu, L. (2009) Structures of OTMA- and DODMA-bentonite and their sorption characteristics towards organic compounds. Journal of Colloid and Interface Science, 331, 8–14.

    Article  Google Scholar 

  • Xu, L., Zhang, M., and Zhu, L. (2014) Adsorption-desorption behavior of naphthalene onto CDMBA modified bentonite: Contribution of the π—π interaction. Applied Clay Science, 100, 29–34.

    Article  Google Scholar 

  • Yariv, S. and Cross, H. (2002) Organo-Clay Complexes and Interactions. Marcel Dekker, New York.

    Google Scholar 

  • Yariv, S., Borisover, M., and Lapides, I. (2011) Few introducing comments on the thermal analysis of organoclays. Journal of Thermal Analysis and Calorimetry, 105, 897–906.

    Article  Google Scholar 

  • Yildiz, N., Erol, M., Aktas, Z., and Calimli, A. (2004) Adsorption of aromatic hydrocarbons on BTEA-bentonites. Adsorption Science and Technology, 22, 145–154.

    Article  Google Scholar 

  • Yildiz, N., Gonulsen, R., Koyuncu, H., and Calimli, A. (2005) Adsorption of benzoic acid and hydroquinone by organically modified bentonites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 260, 87–94.

    Article  Google Scholar 

  • Yilmaz, N. and Yaper, S. (2004) Adsorption properties of tetradecyl- and hexadecyl trimethylammonium bentonites. Applied Clay Science, 27, 223–228.

    Article  Google Scholar 

  • Yuan, G.D., Theng, B.K.G., Churchman, G.J., and Gates, W.P. (2013) Clays and clay minerals for pollution control. Pp. 587–644 in: Handbook of Clay Science, Part B, 2nd edition (F. Bergaya and G. Lagaly, editors). Elsevier, Amsterdam.

    Google Scholar 

  • Zampori, L., Stampino, P.G., Dotelli, G., Botta, D., Natali Sora, I., and Setti, M. (2008) Interlayer expansion of dimethyl ditallowylammonium montmorillonite as a function of 2-chloroaniline adsorption. Applied Clay Science, 41, 149–157.

    Article  Google Scholar 

  • Zhang, Z.Z., Sparks, D.L., and Scrivner, N.C. (1993) Sorption and desorption of quaternary amine cations on clays. Environmental Science & Technology, 27, 1625–1631.

    Article  Google Scholar 

  • Zhao, Q. and Burns, S.E. (2012a) Microstructure of single chain quaternary ammonium cations intercalated into montmorillonite: A molecular dynamics study. Langmuir, 28, 16393–16400.

    Article  Google Scholar 

  • Zhao, Q. and Burns, S.E. (2012b) Molecular dynamics simulation of secondary sorption behavior of montmorillonite modified by single chain quaternary ammonium cations. Environmental Science & Technology, 46, 3999–4007.

    Article  Google Scholar 

  • Zhao, Q. and Burns, S.E. (2013) Modeling sorption and diffusion of organic sorbate in hexadecyltrimethylammonium-modified clay nanopores — A molecular dynamics simulation study. Environmental Science & Technology, 47, 2769–2776.

    Article  Google Scholar 

  • Zhao, H. and Vance, G.F. (1998) Sorption of trichloroethylene by organo-clays in the presence of humic substances. Water Research, 32, 3710–3716.

    Article  Google Scholar 

  • Zhou, Q., Deng, S., Yu, Q., Zhang, Q., Yu, G., Huang, J., and He, H. (2010) Sorption of perfluorooctane sulphonate on organo-montmorillonites. Chemosphere, 78, 688–694.

    Article  Google Scholar 

  • Zhou, Q., Shen, W., Zhu, J., Zhu, R., He, H., Zhou, J., and Yuan, P. (2014) Structure and dynamic properties of water saturated CTMA-montmorillonite: molecular dynamics simulations. Applied Clay Science, 97–98, 62–71.

    Article  Google Scholar 

  • Zhu, J., He, H., Guo, J., Yang, D., and Xie, X. (2003) Arrangement models of alkylammonium cations in the interlayer of HDTMA+ pillared montmorillonites. Chinese Science Bulletin, 48, 368–372.

    Google Scholar 

  • Zhu, J., He, H., Zhu, L., Wen, X., and Deng, F. (2005) Characterization of organic phases in the interlayer of montmorillonite using FTIR and 13C NMR. Journal of Colloid and Interface Science, 286, 239–244.

    Article  Google Scholar 

  • Zhu, J., Zhu, L., Zhu, R., and Chen, B. (2008) Microstructure of organo-bentonites in water and the effect of steric hindrance on the uptake of organic compounds. Clays and Clay Minerals, 56, 144–154.

    Article  Google Scholar 

  • Zhu, J., Wei, J., Zhu, R., Qing, Y., Ge, F., Yuan, P., and He, H. (2010) Simultaneous and sequential adsorption of crystal violet and 2-naphthol onto montmorillonite: a microstructural and thermodynamic study. Water Science and Technology, 62, 1766–1774.

    Article  Google Scholar 

  • Zhu, J., Wang, T., Zhu, R., Ge, F., Yuan, P., and He, H. (2011a) Expansion characteristics of organo montmorillonites during the intercalation, aging, drying and rehydration processes: effect of surfactant/CEC ratio. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 51, 317–322.

    Google Scholar 

  • Zhu, J., Wang, T., Zhu, L., Ge, F., Wei, J., Yuan, P., and He, H. (2011b) Novel polymer/surfactant modified montmorillonite hybrids and the implications for phenol treatment. Applied Clay Science, 51, 317–322.

    Article  Google Scholar 

  • Zhu, L. and Chen, B. (2000) Sorption of phenol, p-nitrophenol and aniline to dual-cation organo-bentonites from water. Environmental Science & Technology, 34, 468–475.

    Article  Google Scholar 

  • Zhu, L. and Zhu, R. (2007) Simultaneous sorption of organic compounds and phosphate to inorganic-organic bentonites from water. Separation and Purification Technology, 54, 71–76.

    Article  Google Scholar 

  • Zhu, L. and Zhu, R. (2011) Simultaneous adsorption of malachite green and hydrophobic organic compounds onto bentonite. Fresenius Environmental Bulletin, 20, 521–527.

    Google Scholar 

  • Zhu, L., Li, Y., and Zhang J. (1997) Sorption of organobentonites to some organic pollutants in water. Environmental Science & Technology, 31, 1407–1410.

    Article  Google Scholar 

  • Zhu, L., Ren, X., and Yu, S. (1998) Use of cetyltrimethylammonium bromide-bentonite to remove organic contaminants of varying polar character from water. Environmental Science & Technology, 32, 3374–3378.

    Article  Google Scholar 

  • Zhu, L., Chen, B., Tao, S., and Chiou, C.T. (2003) Interactions of organic contaminants with mineral-adsorbed surfactants. Environmental Science & Technology, 37, 4001–4006.

    Article  Google Scholar 

  • Zhu, L., Ruan, X., Chen, B., and Zhu, R. (2008) Efficient removal and mechanisms of water soluble aromatic contaminants by a reduced-charge bentonite modified with benzyltrimethylammonium cation. Chemosphere, 70, 1987–1994.

    Article  Google Scholar 

  • Zhu, R. and Zhu, L. (2008) Thermodynamics of naphthalene sorption to organoclays: Role of surfactant packing density. Journal of Colloid and Interface Science, 322, 27–32.

    Article  Google Scholar 

  • Zhu, R., Zhu, L., and Xu, L. (2007) Sorption characteristics of CTMA-bentonite complexes as controlled by surfactant packing density. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294, 221–227.

    Article  Google Scholar 

  • Zhu, R., Zhu, L., Zhu, J., and Xu, L. (2008) Structure of surfactant-clay complexes and their sorptive characteristics toward HOCs. Separation and Purification Technology, 63, 156–162.

    Article  Google Scholar 

  • Zhu, R., Zhu, J., Ge, F., and Yuan, P. (2009a) Regeneration of the spent organoclays after sorption of organic pollutants: a review. Journal of Environmental Management, 90, 3212–3216.

    Article  Google Scholar 

  • Zhu, R., Zhu, L., Zhu, J., Ge, F., and Wang, T. (2009b) Sorption of naphthalene and phosphate to the CTMAB-Al13 intercalated bentonites. Journal of Hazardous Materials, 168, 1590–1594.

    Article  Google Scholar 

  • Zhu, R., Wang, T., Zhu, J., Ge, F., Yuan, P., and He, H. (2010) Structural and sorptive characteristics of the cetyltrimethylammonium and polyacrylamide modified bentonite. Chemical Engineering Journal, 160, 220–225.

    Article  Google Scholar 

  • Zhu, R., Chen, W., Sharply, T.V., Molinari, M., Ge, F., and Parker, C.S. (2011a) Sorptive characteristics of organomontmorillonite toward organic compounds: A combined LFERs and molecular dynamics simulation study. Environmental Science & Technology, 45, 6504–6510.

    Article  Google Scholar 

  • Zhu, R., Sharply, T.V., Molinari, M., Ge, F., and Parker, C.S. (2011b) Structure of water saturated CTMA-montmorillonite hybrid: molecular dynamics simulation investigation. Advanced Materials Research, 233-235, 1872–1877.

    Article  Google Scholar 

  • Zhu, R., Hu, W., Ge, F., You, Z., and Tian, K. (2012a) Molecular dynamics simulation of TCDD adsorption on organo-montmorillonite. Journal of Colloid and Interface Science, 377, 328–333.

    Article  Google Scholar 

  • Zhu, R., Chen, W., Liu, Y., Zhu, J., Ge, F., and He, H. (2012b) Application of linear free energy relationships to characterizing the sorptive characteristics of organic contaminants on organoclays from water. Journal of Hazardous Materials, 233, 228–234.

    Article  Google Scholar 

  • Zhu, R., Zhao, J., Ge, F., Zhu, L., Zhu, J., Tao, Q., and He, H. (2014a) Restricting layer collapse enhances the adsorption capacity of reduced-charge organoclays. Applied Clay Science, 88–89, 73–77.

    Article  Google Scholar 

  • Zhu, R., Chen, Q., Liu, H., Ge, F., Zhu, L., Zhu, J., and He, H. (2014b) Montmorillonite as a multifunctional adsorbent can simultaneously remove crystal violet, cetyltrimethylammonium, and 2-naphthol from water. Applied Clay Science, 88–89, 33–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Zhou, Q., Zhu, J. et al. Organo-Clays As Sorbents of Hydrophobic Organic Contaminants: Sorptive Characteristics and Approaches to Enhancing Sorption Capacity. Clays Clay Miner. 63, 199–221 (2015). https://doi.org/10.1346/CCMN.2015.0630304

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2015.0630304

Key Words

Navigation