Skip to main content
Log in

XAFS Study of Fe-Substituted Allophane and Imogolite

  • Published:
Clays and Clay Minerals

Abstract

The nano-aluminosilicate mineral allophane is common in soils formed from parent materials containing volcanic ash and often contains Fe. Due to its lack of long-range order, the structure of allophane is still not completely understood. In the present study, Fe K-edge X-ray absorption fine structure (XAFS) was used to examine Fe-containing natural and synthetic allophane and imogolite samples. Results indicated that Fe substitutes for octahedrally coordinated Al in allophane, and that Fe exhibits a clustered distribution within the octahedral sheet. Iron adsorbed on allophane surfaces is characterized by spectral features distinct from those of isomorphically substituted Fe and of ferrihydrite. Fe adsorbed on the allophane surfaces probably exists as small polynuclear complexes exhibiting Fe-Fe edge sharing, similar to poorly crystalline Fe oxyhydroxides. The XAFS spectra of natural allophane and imogolite indicate that the Fe in the minerals is a combination of isomorphically substituted and surface-adsorbed Fe. In the synthetic Fe-substituted allophanes, the Fe XAFS spectra did not vary with the Al:Si ratio. Theoretical fits of the extended XAFS (EXAFS) spectra suggest that local atomic structure around octahedral Fe in allophanes is more similar to Fe in a smectite-like structure than to a published theoretical nanoball structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajiboye, B., Akinremi, O.O., and Jürgensen, A. (2007) Experimental validation of quantitative XANES analysis for phosphorus speciation. Soil Science Society of America Journal, 71, 1288–1291.

    Article  Google Scholar 

  • Baker, L.L. and Strawn, D.G. (2012) Fe K-edge XAFS spectra of phyllosilicates of varying crystallinity. Physics and Chemistry of Minerals, 39, 675–684.

    Article  Google Scholar 

  • Baker, L.L., Strawn, D.G., Vaughan, K.L., and McDaniel, P.A. (2010) XAS study of Fe mineralogy in a chronosequence of soil clays formed in basaltic cinders. Clays and Clay Minerals, 58, 772–782.

    Article  Google Scholar 

  • Barron, P., Wilson, M., Campbell, A.S., and Frost, R. (1982) Detection of imogolite in soils using solid state 29Si NMR. Nature, 299, 616–618.

    Article  Google Scholar 

  • Chen, L.X., Liu, T., Thurnauer, M.C., Csencsits, R., and Rajh, T. (2002) Fe2O3 nanoparticle structures investigated by Xray absorption near-edge structure, surface modifications, and model calculations. The Journal of Physical Chemistry B, 106, 8539–8546.

    Article  Google Scholar 

  • Childs, C.W., Parfitt, R.L., and Newman, R.H. (1990) Structural studies of Silica Springs allophane. Clay Minerals 25, 329–341.

    Article  Google Scholar 

  • Clark, C. and McBride, M.B. (1984) Chemisorption of Cu (II) and Co (II) on allophane and imogolite. Clays and Clay Minerals, 32, 4, 300–311.

    Google Scholar 

  • Cradwick, P.D.G., Farmer, V.C., Russell, J.D., Masson, C.R., Wada, K., and Yoshinaga, N. (1972) Imogolite, a hydrated aluminum silicate of tubular structure. Nature Physical Science, 240, 187–189.

    Article  Google Scholar 

  • Creton, B., Bougeard, D., Smirnov, K.S., Guilment, J., and Poncelet, O.G. (2008a) Structural model and computer modeling study of allophane. Journal of Physical Chemistry C, 112, 358–364.

    Article  Google Scholar 

  • Creton, B., Bougeard, D., Smirnov, K.S., Guilment, J., and Poncelet, O. (2008b) Molecular dynamics study of hydrated imogolite. 1. Vibrational dynamics of the nanotube. The Journal of Physical Chemistry C, 112, 10013–10020.

    Article  Google Scholar 

  • Farmer, V.C. (1997) Conversion of ferruginous allophanes to ferruginous beidellites at 95° under alkaline conditions with alternating oxidation and reduction. Clays and Clay Minerals, 45, 591–597.

    Article  Google Scholar 

  • Farmer, V.C., Fraser, A.R., and Tait, J.M. (1977) Synthesis of imogolite: a tubular aluminium silicate polymer. Journal of the Chemical Society, Chemical Communications, 13, 462–463.

    Article  Google Scholar 

  • Farmer, V.C., Fraser, A.R., and Tait, J.M. (1979) Characterization of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy. Geochimica et Cosmochimica Acta, 43, 1417–1420.

    Article  Google Scholar 

  • Farmer, V.C., Krishnamurti, G., and Huang, P. (1991) Synthetic allophane and layer-silicate formation in SiO2-Al2O3-FeO-Fe2O3-MgO-H2O systems at 23°C and 89°C in a calcareous environment. Clays and Clay Minerals, 39, 561–570.

    Article  Google Scholar 

  • Galoisy, L., Calas, G., and Arrio, M.A. (2001) High-resolution XANES spectra of iron in minerals and glasses: structural information from the pre-edge region. Chemical Geology, 174, 307–319.

    Article  Google Scholar 

  • Gates, W.P., Slade, P.G., Manceau, A., and Lanson, B. (2002) Site occupancies by iron in nontronites. Clays and Clay Minerals, 50, 223–239.

    Article  Google Scholar 

  • Goodman, B., Russell, J., Montez, B., Oldfield, E., and Kirkpatrick, R. (1985) Structural studies of imogolite and allophanes by aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopy. Physics and Chemistry of Minerals, 12, 342–346.

    Article  Google Scholar 

  • Gustafsson, J.P. (2001) The surface chemistry of imogolite. Clays and Clay Minerals, 49, 73–80.

    Article  Google Scholar 

  • Henmi, T. and Wada, K. (1976) Morphology and composition of allophane. American Mineralogist, 61, 379–390.

    Google Scholar 

  • Hiradate, S. and Wada, S.-I. (2005) Weathering process of volcanic glass to allophane determined by 27Al and 29Si solid-state NMR. Clays and Clay Minerals, 53, 401–408.

    Article  Google Scholar 

  • Horikawa, Y. and Soezima, H. (1977) State analysis of iron in allophanic clays II: Iron L-emission band spectra from allophanic clays and hisingerite by the use of an X-ray microanalyzer. Clay Science, 5, 97–102.

    Google Scholar 

  • Ildefonse, P., Kirkpatrick, R.J., Montez, B., Calas, G., Flank, A.M., and Lagarde, P. (1994) 27Al MAS NMR and aluminum X-ray absorption near edge structure study of imogolite and allophanes. Clays and Clay Minerals, 42, 276–287.

    Article  Google Scholar 

  • Iyoda, F., Hayashi, S., Arakawa, S., John, B., Okamoto, M., Hayashi, H., and Yuan, G. (2012) Synthesis and adsorption characteristics of hollow spherical allophane nano-particles. Applied Clay Science, 56, 77–83.

    Article  Google Scholar 

  • Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., and Delvaux, B. (2005) Halloysite clay minerals - a review. Clay Minerals, 40, 383–426.

    Article  Google Scholar 

  • Kaufhold, S., Kaufhold, A., Jahn, R., Brito, S., Dohrmann, R., Hoffmann, R., Gliemann, H., Weidler, P., and Frechen, M. (2009) A new massive deposit of allophane raw material in Ecuador. Clays and Clay Minerals, 57, 72–81.

    Article  Google Scholar 

  • Kaufhold, S., Ufer, K., Kaufhold, A., Stucki, J.W., Anastácio, A.S., Jahn, R., and Dohrmann, R. (2010) Quantification of allophane from Ecuador. Clays and Clay Minerals, 58, 707–716.

    Article  Google Scholar 

  • Kawano, M. and Tomita, K. (2001) Microbial biomineralization in weathered volcanic ash deposit and formation of biogenic minerals by experimental incubation. American Mineralogist, 86, 400–410.

    Article  Google Scholar 

  • Kitagawa, Y. (1973) Substitution of aluminum by iron in allophane. Clay Science, 4, 151–154.

    Google Scholar 

  • Levard, C., Rose, J., Thill, A., Masion, A., Doelsch, E., Maillet, P., Spalla, O., Olivi, L., Cognigni, A., Ziarelli, F., and Bottero, J.Y. (2010) Formation and growth mechanisms of imogolite-like aluminogermanate nanotubes. Chemistry of Materials, 22, 2466–2473.

    Article  Google Scholar 

  • Levard, C., Masion, A., Rose, J., Doelsch, E., Borschneck, D., Olivi, L., Chaurand, P., Dominici, C., Ziarelli, F., Thill, A., Maillet, P., and Bottero, J.Y. (2011) Synthesis of Geimogolite: influence of the hydrolysis ratio on the structure of the nanotubes. Physical Chemistry Chemical Physics, 13, 14516–14522.

    Article  Google Scholar 

  • Levard, C., Doelsch, E., Basile-Doelsch, I., Abidin, Z., Miche, H., Masion, A., Rose, J., Borschneck, D., and Bottero, J.Y. (2012) Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils. Geoderma, 183–184, 100–108.

    Article  Google Scholar 

  • Li, L., Xia, Y., Zhao, M., Song, C., Li, J., and Liu, X. (2008) The electronic structure of a single-walled aluminosilicate nanotube. Nanotechnology, 19, 175702.

    Article  Google Scholar 

  • MacKenzie, K.J.D. and Cardile, C.M. (1988) The structure and thermal reactions of natural iron-containing allophanes studied by 57-Fe Mössbauer spectroscopy. Thermochimica Acta, 130, 259–267.

    Article  Google Scholar 

  • MacKenzie, K., Bowden, M., and Meinhold, R. (1991) The structure and thermal transformations of allophanes studied by 29Si and 27Al high resolution solid-state NMR. Clays and Clay Minerals, 39, 337–346.

    Article  Google Scholar 

  • Manceau, A., Bonnin, D., Kaiser, P., and Frétigny, C. (1988) Polarized EXAFS of biotite and chlorite. Physics and Chemistry of Minerals, 16, 180–185.

    Article  Google Scholar 

  • Manceau, A., Bonnin, D., Stone, W.E.E., and Sanz, J. (1990) Distribution of Fe in the octahedral sheet of trioctahedral micas by polarized EXAFS; comparison with NMR results. Physics and Chemistry of Minerals, 17, 363–370.

    Article  Google Scholar 

  • Manceau, A., Chateigner, D., and Gates, W.P. (1998) Polarized EXAFS, distance-valence least-squares modeling (DVLS), and quantitative texture analysis approaches to the structural refinement of Garfield nontronite. Physics and Chemistry of Minerals, 25, 347–365.

    Article  Google Scholar 

  • Manceau, A., Lanson, B., Drits, V.A., Chateigner, D., Gates, W.P., Wu, J., Huo, D., and Stucki, J.W. (2000) Oxidationreduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites. American Mineralogist, 85, 133–152.

    Article  Google Scholar 

  • McBride, M.B., Farmer, V.C., Russell, J.D., Tait, J.M., and Goodman, B.A. (1984) Iron substitution in aluminosilicate sols synthesized at low pH. Clay Minerals, 19, 1–8.

    Article  Google Scholar 

  • Ming, D.W., Mittlefehldt, D.W., Morris, R.V., Golden, D.C., Gellert, R., Yen, A., Clark, B.C., Squyres, S.W., Farrand, W.H., Ruff, S.W., Arvidson, R.E., Klingelhöfer, G., McSween, H.Y., Rodionov, D.S., Schröder, C., de Souza, P.A., Jr., and Wang, A. (2006) Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. Journal of Geophysical Research, 111, DOI: https://doi.org/10.1029/2005JE002560.

    Article  Google Scholar 

  • Miyauchi, N. and Aomine, S. (1966) Mineralogy of gel-like substance in the pumice bed in Kanuma and Kitakami Districts. Soil Science and Plant Nutrition, 12, 19–22.

    Article  Google Scholar 

  • Montarges-Pelletier, E., Bogenez, S., Pelletier, M., Razafitianamaharavo, A., Ghanbaja, J., Lartiges, B., and Michot, L. (2005) Synthetic allophane-like particles: textural properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 255, 1–10.

    Article  Google Scholar 

  • Newville, M. (2001) IFEFFIT: interactive XAFS analysis and FEFF fitting. Journal of Synchrotron Radiation, 8, 322–324.

    Article  Google Scholar 

  • O’Day, P.A., Rehr, J.J., Zabinsky, S.I., and Brown, G.E., Jr. (1994) Extended X-ray absorption fine structure (EXAFS) analysis of disorder and multiple-scattering in complex crystalline solids. Journal of the American Chemical Society, 116, 2938–2949.

    Article  Google Scholar 

  • Ohashi, F., Wada, S.-I., Suzuki, M., Maeda, M., and Tomura, S. (2002) Synthetic allophane from high-concentration solutions: nanoengineering of the porous solid. Clay Minerals, 37, 451–456.

    Article  Google Scholar 

  • Ookawa, M., Inoue, Y., Watanabe, M., Suzuki, M., and Yamaguchi, T. (2006) Synthesis and characterization of Fe containing imogolite. Clay Science, 12, Suppl. 2, Claysphere, 280–284.

    Google Scholar 

  • Ossaka, J., Iwai, S.-i., Kasai, M., Shirai, T., and Hamada, S. (1971) Coexistence states of iron in synthesized iron-bearing allophane (Al2O3-SiO2-Fe2-H2O system). Bulletin of the Chemical Society of Japan, 44, 716–718.

    Article  Google Scholar 

  • Ostergren, J.D., Brown, G.E., Parks, G.A., and Tingle, T.N. (1999) Quantitative speciation of lead in selected mine tailings from Leadville, CO. Environmental Science & Technology, 33, 1627–1636.

    Article  Google Scholar 

  • Parfitt, R.L. (2009) Allophane and imogolite: role in soil biogeochemical processes. Clay Minerals, 44, 135–155.

    Article  Google Scholar 

  • Parfitt, R.L. and Henmi, T. (1980) Structure of some allophanes from New Zealand. Clays and Clay Minerals, 28, 285–294.

    Article  Google Scholar 

  • Parfitt, R.L., Furkert, R.J., and Henmi, T. (1980) Identification and structure of two types of allophane from volcanic ash soils and tephra. Clays and Clay Minerals, 28, 328–334.

    Article  Google Scholar 

  • Pokrovski, G.S., Schott, J., Farges, F., and Hazemann, J.-L. (2003) Iron (III)-silica interactions in aqueous solution: insights from X-ray absorption fine structure spectroscopy. Geochimica et Cosmochimica Acta, 67, 3559–3573.

    Article  Google Scholar 

  • Rampe, E., Kraft, M., Sharp, T., Golden, D., Ming, D., and Christensen, P. (2012) Allophane detection on Mars with Thermal Emission Spectrometer data and implications for regional-scale chemical weathering processes. Geology, G33215.33211.

    Google Scholar 

  • Ravel, B. (2001) ATOMS: crystallography for the X-ray absorption spectroscopist. Journal of Synchrotron Radiation, 8, 314–316.

    Article  Google Scholar 

  • Ravel, B. and Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537–541.

    Article  Google Scholar 

  • Roberts, D.R., Scheinost, A.C., and Sparks, D.L. (2002) Zinc speciation in a smelter-contaminated soil profile using bulk and microspectroscopic techniques. Environmental Science & Technology, 36, 1742–1750.

    Article  Google Scholar 

  • Schwertmann, U., Friedl, J., and Kyek, A. (2004) Formation and properties of a continuous crystallinity series of synthetic ferrihydrites (2- to 6-line) and their relation to FeOOH forms. Clays and Clay Minerals, 52, 221–226.

    Article  Google Scholar 

  • Shimizu, H., Watanabe, T., Henmi, T., Masuda, A., and Saito, H. (1988) Studies on allophane and imogolite by high-resolution solid-state 29Si-and 27Al-NMR and ESR. Geochemical Journal, 22, 23–31.

    Article  Google Scholar 

  • Tazaki, K., Morikawa, T., Watanabe, H., Asada, R., and Okuno, M. (2006) Microbial formation of imogolite. Clay Science, 12, Supplement 2, 245–254.

    Google Scholar 

  • Toner, B.M., Santelli, C.M., Marcus, M.A., Wirth, R., Chan, C.S., McCollom, T., Bach, W., and Edwards, K.J. (2009) Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge. Geochimica et Cosmochimica Acta, 73, 388–403.

    Article  Google Scholar 

  • Tsipursky, S.I. and Drits, V.A. (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Minerals, 19, 177–193.

    Article  Google Scholar 

  • Vantelon, D., Montarges-Pelletier, E., Michot, L.J., Pelletier, M., Thomas, F., and Briois, V. (2003) Iron distribution in the octahedral sheet of dioctahedral smectites. An Fe K-edge X-ray absorption spectroscopy study. Physics and Chemistry of Minerals, 30, 44–53.

    Article  Google Scholar 

  • Waychunas, G.A., Apted, M.J., and Brown, G.E. (1983) X-ray K-edge absorption spectra of Fe minerals and model compounds: Near-edge structure. Physics and Chemistry of Minerals, 10, 1–9.

    Article  Google Scholar 

  • Webb, S.M. (2005) Sixpack: A graphical user interface for XAS analysis using IFEFFIT. Physica Scripta, T115, 1011–1014.

    Article  Google Scholar 

  • Westre, T.E., Kennepohl, P., DeWitt, J.G., Hedman, B., Hodgson, K.O., and Solomon, E.I. (1997) A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. Journal of the American Chemical Society, 119, 6297–6314.

    Article  Google Scholar 

  • Yucelen, G.I., Choudhury, R.P., Vyalikh, A., Scheler, U., Beckham, H.W., and Nair, S. (2011) Formation of single-walled aluminosilicate nanotubes from molecular precursors and curved nanoscale intermediates. Journal of the American Chemical Society, 133, 5397–5412.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie L. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, L.L., Nickerson, R.D. & Strawn, D.G. XAFS Study of Fe-Substituted Allophane and Imogolite. Clays Clay Miner. 62, 20–34 (2014). https://doi.org/10.1346/CCMN.2014.0620103

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2014.0620103

Key Words

Navigation