Skip to main content
Log in

Mineral Preferred Orientation and Microstructure in the Posidonia Shale in Relation to Different Degrees of Thermal Maturity

  • Published:
Clays and Clay Minerals

Abstract

The thermal maturity of samples of the Posidonia Shale collected from the Hils Syncline, northern Germany, varies significantly as a function of location indicating variations in local history. Synchrotron X-ray diffraction was used to document the composition and the preferred orientation of four samples of the Posidonia Shale with different degrees of maturity (0.68–1.45%, Ro) to determine possible effects on diagenesis and preferred orientation. Overall, the degree of preferred orientation of all clay minerals (illite-smectite, illite-mica, and kaolinite) and in all samples is similar, with (001) pole figure maxima ranging from 3.7 to 6.3 multiples of a random distribution (m.r.d.). Calcite displays weak preferred orientation, with c axes perpendicular to the bedding plane (1.1–1.3 m.r.d.). Other constituent phases such as quartz, feldspars, and pyrite have a random orientation distribution. The difference in thermal history, which causes significant changes in the maturity of organic matter, influenced the preferred orientation of clay minerals only marginally as most of the alignment seems to have evolved early in their history. Synchrotron X-ray microtomography was used to characterize the three-dimensional microstructure of a high-maturity sample. Low-density features, including porosity, fractures, and kerogen, were observed to be elongated and aligned roughly parallel to the bedding plane. The volume of low-density features was estimated to be ~7 vol.%, consistent with previous petrophysical measurements of porosity of 8–10 vol.%. Transmission electron microscopy analysis of samples with different degrees of maturity (0.74%Ro and 1.45%Ro) was used to document microstructures at the nanoscale as well as the presence of kerogen. In the high-maturity sample, pores were less abundant while minerals were more deformed as shown by fractured calcite and by kinked and folded illite. Some of the porosity was aligned with clay platelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aplin, A.C., Matenaar, I.F., McCarty, D.K., and van der Pluijm, B.A. (2006) Influence of mechanical compaction and clay mineral diagenesis on the microfabric and porescale properties of deep-water Gulf of Mexico mudstones. Clays and Clay Minerals, 54, 500–514.

    Article  Google Scholar 

  • Bachrach, R. (2011) Elastic and resistivity anisotropy of shale during compaction and diagenesis: Joint effective medium modeling and field observations. Geophysics, 76, E175–E186.

    Article  Google Scholar 

  • Baker, D.W., Chawla, K.S., and Krizek, R.J. (1993) Compaction fabrics of pelites: experimental consolidation of kaolinite and implications for analysis of strain in slate. Journal of Structural Geology, 15, 1123–1137.

    Article  Google Scholar 

  • Bernard, S., Horsfield, B., Schulz, H.-M., Schreiber, A., Wirth, R., Vu, T.T.A., Perssen, F., Könitzer, S., Volk, H., Sherwood, N., and Fuentes, D. (2010) Multi-scale detection of organic signatures provides insights into gas shale properties and evolution. Chemie der Erde, 70, 119–133.

    Article  Google Scholar 

  • Bernard, S., Horsfield, B., Schulz, H.-M., Wirth, R., and Schreiber, A. (2012) Geochemical evolution of organic-rich shales with increasing maturity: a STXM and TEM study of the Posidonia Shale (Lower Toarcian, nothern Germany). Marine and Petroleum Geology, 31, 70–89.

    Article  Google Scholar 

  • Best, M.E. and Katsube, T. J. (1995) Shale permeability and its significance in hydrocarbon exploration. The Leading Edge, 14, 165–170.

    Article  Google Scholar 

  • Bilgili, F., Götze, H.-J., Pašteka, R., Schmidt, S., and Hackney, R. (2009) Intrusion versus inversion - a 3D density model of the southern rim of the Northwest German Basin. International Journal of Earth Sciences, 98, 571–583.

    Article  Google Scholar 

  • Bish, D.L. (1993) Rietveld refinement of kaolinite structure at 1.5 K. Clays and Clay Minerals, 41, 738–744.

    Article  Google Scholar 

  • Curtis, C.D., Lipshie, S.R., Oertel, G., and Pearson, M.J. (1980) Clay orientation in some Upper Carboniferous mudrocks, its relationship to quartz content and some inferences about fissility, porosity and compactional history. Sedimentology, 27, 333–339.

    Article  Google Scholar 

  • Curtis, M.E., Ambrose, R.J., and Sondergeld, C.H. (2010) Structural characterization of gas shales on the micro- and nano-Scales. Canadian Unconventional Resources and International Petroleum Conference, Calgary, Alberta, Canada. ISBN 978-1-55563-217-7.

    Google Scholar 

  • Day-Stirrat, R., Loucks, R.G., Milliken, K.L., Hillier, S., and van der Pluijm, B. (2008a) Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth Basin, Texas (U.S.A). Clays and Clay Minerals, 56, 100–111.

    Article  Google Scholar 

  • Day-Stirrat, R.J., Aplin, A.C., Środoń, J., and van der Pluijm, B.A. (2008b) Diagenetic reorientation of phyllosilicate minerals in Paleogene mudstones of the Podhale Basin, southern Poland. Clays and Clay Minerals, 56, 100–111.

    Article  Google Scholar 

  • Deutloff, O., Teichmüller, M., Teichmüller, R., and Wolf, M. (1980) Inkohlungsuntersuchungen im Mesozoikum des Massivs von Vlotho (Niedersächsisches Tektogen). Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 6, 321–341.

    Google Scholar 

  • Dierick, M., Masschaele, B., and Van Hoorebeke, L. (2004) Octopus, a fast and user-friendly tomographic reconstruction package developed in Lab View1. Measurement Science and Technology, 15, 1366–1370.

    Article  Google Scholar 

  • Doornenbal, J.C. and Stevenson, A.G. (editors) (2010) Petroleum Geological Atlas of the southern Permian Basin Area. European Association of Geoscientists and Engineers Publications BV, Houten, The Netherlands, 354 pp.

    Google Scholar 

  • Downs, R.T. and Hall-Wallace, M. (2003) The American Mineralogist Crystal Structure Database. American Mineralogist, 88, 247–250.

    Article  Google Scholar 

  • Draege, A., Jakobsen, M., and Johansen, T.A. (2006) Rock physics modeling of shale diagenesis. Petroleum Geoscience, 12, 49–57.

    Article  Google Scholar 

  • Elfallagh, F. and Inkson, B.J. (2009) 3D analysis of crack morphologies in silicate glass using FIB tomography. Journal of the European Ceramic Society, 29, 47–52.

    Article  Google Scholar 

  • Gualtieri, A.F. (2000) Accuracy of XRPD QPA using the combined Rietveld-RIR method. Journal of Applied Crystallography, 33, 267–278.

    Article  Google Scholar 

  • Heim, S., Guttmann P., Rehbein, S., Werner, S., and Schneider, G. (2009) Energy-tunable full-field X-ray microscopy. Cryo-tomography and full-field spectroscopy with the new BESSY TXM. Journal of Physics: Conference Series, 186, 012041.

    Google Scholar 

  • Ho, N.-C., Peacor, D.R., and van der Pluijm, B.A. (1995) Reorientation of phyllosilicates in mudstones-to-slate transition at Lehigh Gap, Pennsylvania. Journal of Structural Geology, 17, 345–356.

    Article  Google Scholar 

  • Ho, N.-C., Peacor, D.R., and van der Pluijm, B.A. (1999) Preferred orientation of phyllosilicates in Gulf Coast mudstones and relation to the smectite-illite transition. Clays and Clay Minerals, 47, 495–504.

    Article  Google Scholar 

  • Holzner, C., Feser, M., Vogt, S., Hornberger, B., Baines, S.B., and Jacobsen, C. (2010) Zernike phase contrast in scanning microscopy with X-rays. Nature Physics, 6, 883–887.

    Article  Google Scholar 

  • Hornby, B.E., Schwartz, L.M., and Hudson, J.A. (1994) Anisotropic effective-medium modelling of the elastic properties of shales. Geophysics 59, 1570–1583.

    Article  Google Scholar 

  • Horsfield, B., Littke, R., Mann, U., Bernard, S., Vu, T., diPrimio, R., and Schulz, H. (2010) Shale Gas in the Posidonia Shale, Hils Area, Germany. AAPG Search and Discovery Article # 110126. Adapted from oral presentation at session, Genesis of Shale Gas - Physicochemical and Geochemical Constraints Affecting Methane Adsorption and Desorption, at AAPG Annual Convention, New Orleans, Louisiana, USA, 11–14 April, 2010.

    Google Scholar 

  • Jenkins, C.D. and Boyer II, C.M. (2008) Coalbed- and Shale- Gas Reservoirs. Journal of Petroleum Technology, 60, 92–99.

    Article  Google Scholar 

  • Johansen, T.A., Ruud, B.O., and Jakobsen, M. (2004) Effect of grain scale alignment on seismic anisotropy and reflectivity of shales. Geophysical Prospecting, 52, 133–149.

    Article  Google Scholar 

  • Kanitpanyacharoen, W., Wenk, H.-R., Kets, F., and Lehr, B.C. (2011) Texture and anistropy analysis of Qusaiba shales. Geophysical Prospecting, 59, 536–556.

    Article  Google Scholar 

  • Keller, L.M., Holzer, L., Wepf, R., and Gasser, P. (2011) 3D Geometry and topology of pore pathways in Opalinus clay: Implications for mass transport. Applied Clay Science, 52, 85–95.

    Article  Google Scholar 

  • Kus, J., Cramer, B., and Kockel, F. (2005) Effects of a Cretaceous structural inversion and a postulated high heat flow event on petroleum system of the western Lower Saxony Basin and the charge history of the Apeldorn gas field. Netherlands Journal of Geoscience, 84, 3–24.

    Google Scholar 

  • Leythaeuser, D., Alterbäumer, F.J., and Schaefer, R.G. (1980) Effect of an igneous intrusion on maturation of organic matter in Lower Jurassic shales from NW-Germany. Physics and Chemistry of the Earth, 12, 133–139.

    Article  Google Scholar 

  • Littke, R. and Rullkötter, J. (1987) Mikroskopische und makroskopische Unterschiede zwischen Profilen unreifen und reifen Posidonienschiefers ans der Hilsmulde. Facies, 17, 171–180.

    Article  Google Scholar 

  • Littke, R., Baker, D.R., and Leythaeuser, D. (1988) Microscopic and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rocks of different maturities. Organic Geochemistry, 13, 549–559.

    Article  Google Scholar 

  • Littke, R., Baker, D.R., Leythaeuser, D., and Rullkötter, J. (1991) Keys to the depositional history of the Posidonia Shale (Toarcian) in the Hils Syncline, northern Germany. Pp. 311–333 in: Modern and Ancient Continental Shelf Anoxia (R.V. Tyson, editor). Special Publications 58, Geological Society, London.

    Google Scholar 

  • Littke, R., Baker, D.R., and Rullkötter, J. (1997) Deposition of petroleum source rocks. Pp. 271–333 in: Petroleum and Basin Evolution (D.H. Welte, B. Horsfield, and D.R. Baker, editors). Springer, Heidelberg, Germany.

    Chapter  Google Scholar 

  • Lonardelli, I., Wenk, H.-R., and Ren, Y. (2007) Preferred orientation and elastic anisotropy in shales. Geophysics, 72, D33–D40.

    Article  Google Scholar 

  • Loucks, R.G., Reed, R.M., Ruppel, S., and Jarvie, D.M. (2009) Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79, 848–861.

    Article  Google Scholar 

  • Lutterotti, L., Matthies, S., Wenk, H.-R., Shultz, A.J., and Richardson, J.W. (1997) Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. Journal of Applied Physics, 81, 594–600.

    Article  Google Scholar 

  • Mann, U. (1987) Veränderung von Mineralmatrix und Porosität eines Erdölmuttergesteins durch einen Intrusivkörper (Lias epsilon 2-3: Hilsmulde, NW-Deutschland). Facies, 17, 181–188.

    Article  Google Scholar 

  • Mann, U., Leythaeuser, D., and Müller, P.J. (1986) Relation between source rock properties and wireline log parameters: An example from Lower Jurassic Posidonia Shale, NWGermany. Organic Geochemistry, 10, 1105–1112.

    Article  Google Scholar 

  • Marone, F., Hintermüller, C., McDonald, S., Abela, R., Mikuljan, G., Isenegger, A., and Stampanoni, M. (2009) Xray Tomographic Microscopy at TOMCAT. Journal of Physics: Conference Series, 186, 012042.

    Google Scholar 

  • Martini, A.M., Walter, L.M., Ku, T.C.W., Budai, J.M., McIntosh, J.C., and Schoell, M. (2003) Microbial production and modification of gases in sedimentary basins: A geochemical case study from a Devonian shale gas play, Michigan basin. AAPG Bulletin, 87, 1355–1375.

    Article  Google Scholar 

  • Matthies, S. and Vinel, G.W. (1982) On the reproduction of the orientation distribution function of textured samples from reduced pole figures using the concept of conditional ghost correction. Physica Status Solidi B, 122, K111–K114.

    Article  Google Scholar 

  • Midgley, P.A., Ward, E.P.W., Hungria, A.B., and Thomas, J.M. (2007) Nanotomography in the chemical, biological and materials sciences. Chemical Society Reviews, 36, 1477–1494.

    Article  Google Scholar 

  • Militzer, B., Wenk, H.-R., Stackhouse, S., and Stixrude, L. (2011) First-principles calculation of the elastic moduli of sheet silicates and their application to shale anisotropy. American Mineralogist, 96, 125–137.

    Article  Google Scholar 

  • Muñoz, Y.A., Littke, R., and Brix, M.R. (2007) Fluid systems and basin evolution of the western Lower Saxony Basin, Germany. Geofluids, 7, 335–355.

    Article  Google Scholar 

  • Plançon, A., Tsipurski, S.I., and Drits, V.A. (1985) Calculation of intensity distribution in the case of oblique texture electron diffusion. Journal of Applied Crystallography 18, 191–196.

    Article  Google Scholar 

  • Petmecky, S., Meier, L., Reiser, H., and Littke, R. (1999) High thermal maturity in the Lower Saxony Basin: Intrusion or deep burial?. Tectonophysics, 304, 317–344.

    Article  Google Scholar 

  • Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71.

    Article  Google Scholar 

  • Rullkötter, J., Leythaeuser, D., Horsfield, B., Littke, R., Mann, U., Müller, P.J., Radke, M., Schaefer, R.G., Schenk, H.-J., Schwochau, K., Witte, E.G., and Welte, D.H. (1988) Organic matter maturation under the influence of a deep intrusive heat source: A natural experiment for quantitation of hydrocarbon generation and expulsion from a petroleum source rock (Toarcian shale, northern Germany). Organic Geochemistry, 13, 847–856.

    Article  Google Scholar 

  • Sayers, C.M. (1994) The elastic anisotropy of shales. Journal of Geophysical Research, 99, 767–774.

    Article  Google Scholar 

  • Schulz, H.-M., Horsfield, B., and Sachsenhofer, R.F. (2010) Shale gas in Europe: a regional overview and current research activities. Petroleum Geology Conference series, 7, 1079–1085.

    Article  Google Scholar 

  • Sintubin, M. (1994) Clay fabrics in relation to the burial history of shales. Sedimentology, 41, 1161–1169.

    Article  Google Scholar 

  • Slaughter, M. and Hill, R.J. (1991) The influence of organic matter in organogenic dolomization. Journal of Sedimentary Research, 61, 296–303.

    Article  Google Scholar 

  • Stampanoni, M., Groso, A. Isenegger, A., Mikuljan, G., Chen, Q., Bertrand, A., Henein, S., Betemps, R., Frommherz, U., Böhler, P., Meister, D., Lange, M., and Abela, R. (2006) Trends in synchrotron-based tomographic imaging: the SLS experience. In: Developments in X-ray Tomography V Ulrich Bonse (editor). Proceedings of SPIE, 6318, 63180M.

    Article  Google Scholar 

  • Tissot, B.O. and Welte, D.D. (1984) Petroleum Formation and Occurrence, 2nd edition. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Valcke, S.L.A., Casey, M., Lloyd, G.E., Kendall, J.-M., and Fisher, Q.J. (2006) Lattice preferred orientation and seismic anisotropy in sedimentary rocks. Geophysical Journal International, 166, 652–666.

    Article  Google Scholar 

  • Vernik, L. (1993) Microcrack-induced versus intrinsic elastic anisotropy in mature hc-source shales. Geophysics, 58, 1703–1706.

    Article  Google Scholar 

  • Vernik, L. (1994) Hydrocarbon-generation-induced microcracking of source rocks. Geophysics, 59, 555–563.

    Article  Google Scholar 

  • Vernik, L. and Nur, A. (1992) Ultrasonic velocity and anisotropy of hydrocarbon source rock. Geophysics, 57, 727–735.

    Article  Google Scholar 

  • Voltolini, M., Wenk, H.-R., Mondol, N.H., Bjørlykke, K., and Jahren, J. (2009) Anisotropy of experimentally compressed kaolinite-illite-quartz mixtures. Geophysics, 74, 13–23.

    Article  Google Scholar 

  • Wang, Y., De Carlo, F.D., Mancini, C., McNulty, I., Tieman, B., Bresnahan, J., Foster, I., Insley, J., Lane, P., von Laszewski, G., Kesselman, C., Su, M.-H., & Thiebaux, M. (2001) A high-throughput X-ray microtomography system at the Advanced Photon Source. Review of Scientific Instruments, 72, 2062–2068.

    Article  Google Scholar 

  • Wenk, H.-R., Matthies, S., Donovan, J., and Chateigner, D. (1998) Beartex: A windows-based program system for quantitative texture analysis. Journal of Applied Crystallography, 31, 262–269.

    Article  Google Scholar 

  • Wenk, H.-R., Voltolini, M., Mazurek, M., Loon, L.R.V., and Vinsot, A. (2008) Preferred orientations and anisotropy in shales: Callovo-Oxfordian shale (France) and Opalinus clay (Switzerland). Clays and Clay Minerals, 56, 285–306.

    Article  Google Scholar 

  • Wenk, H.-R., Kanitpanpanyacharoen, W., and Voltolini, M. (2010) Preferred orientation of phyllosilicates: Comparison of fault gouge, shale and schist. Journal of Structural Geology, 32, 478–489.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Rudolf Wenk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanitpanyacharoen, W., Kets, F.B., Wenk, HR. et al. Mineral Preferred Orientation and Microstructure in the Posidonia Shale in Relation to Different Degrees of Thermal Maturity. Clays Clay Miner. 60, 315–329 (2012). https://doi.org/10.1346/CCMN.2012.0600308

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2012.0600308

Keywords

Navigation