Skip to main content
Log in

Intrusion versus inversion—a 3D density model of the southern rim of the Northwest German Basin

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

An unsolved problem of regional importance for both the evolution and structure of the Northwest German Basin is the existence or non-existence of the so-called Bramsche Massif. Explaining the nature of this massif and the cause of a related strong, positive Bouguer anomaly (Bramsche Anomaly) is critical. In the study described here, we tested an existing “intrusion model” against a newer “inversion model” in the southern Northwest German Basin. In the intrusion model, the strongly-positive Bouguer anomaly represents the gravity effect of an intrusion at depths between 6 and 10 km. More recent interpretations invoke tectonic inversion rather than intrusion to explain increased burial and the low level of hydrocarbon maturity found in boreholes. We tested these different interpretations by constructing 3D forward density models to 15 km depth. The intrusion model was updated and adjusted to incorporate recent data and we also modelled pre-Zechstein structures using different scenarios. The final model has a very good fit between measured and modelled gravity fields. Based on currently available seismic and structural models, as well as borehole density measurements, we show that the positive Bouguer anomaly cannot be modeled without a high-density, intrusive-like body at depth. However, further in-sight into the crustal structures of the Bramsche region requires more detailed investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bachmann GH, Grosse S (1989) Struktur und Entstehung des Norddeutschen Beckens—geologische und geophysikalische Interpretation einer verbesserten Bouguer-Schwerekarte. Das Norddeutsche Becken, Heft 2 Nds Akad Geowiss Veröff, Hannover, pp 23–47

  • Bachmann GH, Bayer U, Dürbaum HJ, Hoffmann N, Krawczyk CM, Lück E, McCann T, Meissner R, Meyer H, Oncken O, Polom U, Prochnow U, Rabbel W, Scheck M, Stiller M (1999) Deep crustal structure of the Northeast German basin: new DEKORP-BASIN 96 deep-profiling results. Geology 27(1):55–58

    Article  Google Scholar 

  • Baldschuhn R, Binot F, Fleig, S, Kockel F (eds) (2001) Geotektonischer Atlas von NW-Deutschland und dem deutschen Nordsee-Sektor—Strukturen, Strukturentwicklung, Paläogeographie. Geol Jahrbuch (A), vol 153

  • Bayer U, Scheck M, Rabbel W, Krawczyk C, Götze HJ, Stiller M, Beilecke T, Marotta AM, Barrio-Alvers L, Kuder J (1999) An integrated study of the NE German Basin. Tectonophysics 314:285–307

    Article  Google Scholar 

  • Brauner HJ (1996) Neubearbeitung und Reinterpretation seismischer Weitwinkeldaten. Unpublished Thesis, Universität Kiel

  • Breunig M, Cremers AB, Götze HJ, Schmidt S, Seidemann R, Shumilov S, Siehl A (1999) First steps towards an interoperable GIS—an example from southern Lower Saxony. Phys Chem Earth (A) 24/3:179–190

    Article  Google Scholar 

  • Breunig M, Cremers AB, Götze HJ, Schmidt S, Seidemann R, Shumilov S, Siehl A (2000) Geological mapping based on 3D models using an interoperable GIS (geo-information-systems). J Spat Inf Decis Mak 13:12–18. ISSN 0935–1523

    Google Scholar 

  • Brink HJ, (2002) The Bramsche-massif anomalies—again an open question? Erdöl Erdgas Kohle 118:18–22

    Google Scholar 

  • Brockamp B (1967) Kurzbereicht über die im Gebiet um Osnabrück durchgeführten seismischen Arbeiten des Instituts für Reine und Angewandte Geophysik der Universität Münster. Veröffentlichung der Deutschen Geodätischen Komission Heft 153(Reihe B):1–12

    Google Scholar 

  • Cooper GRJ (2004) Euler deconvolution applied to potential field gradients. Explor Geophys 35:165–170

    Article  Google Scholar 

  • Dohr G (1989) Ergebnisse geophysikalischer Arbeiten zur Untersuchung des tieferen Untergrundes in Norddeutschland. Nds Akad Geowiss Veröfftl Heft 2:4–47

    Google Scholar 

  • Fitzgerald D, Reid A, McInerney Ph (2004) New discrimination techniques for Euler deconvolution. Comput Geosci 30:461–469

    Article  Google Scholar 

  • Giebeler-Degro M (1986) Zur Tiefenerkundung des Niedersächsischen Tektogens durch dreidimensionale Simulationsrechnungen. Unpublished Thesis, TU Clausthal

  • Götze HJ (1976) Ein numerisches Verfahren zur Berechnung der gravimetrischen und magnetischen Feldgrößen für dreidimensionale Modellkörper. Unpublished Thesis, TU Clausthal Clausthal-Zellerfeld

  • Götze HJ, (1984) Über den Einsatz interaktiver Computergraphik im Rahmen 3-dimensionaler Interpretationstechniken in Gravimetrie und Magnetik. Unpublished Thesis, TU Clausthal

  • Götze HJ, Lahmeyer B (1988) Application of three-dimensional interactive modelling in gravity and magnetics. Geophysics 53(8):1096–1108

    Article  Google Scholar 

  • Hoffmann N, Stiewe H (1994) Neuerkenntnisse zur geologisch-geophysikalischen Modellierung der Pritzwalkanomalie im Bereich des Ostelbischen Massivs. Zeitschrift geologischer Wissenschaften 22:161–171

    Google Scholar 

  • Hoffmann N, Jödicke H, Horejschi L (2005) Regional distrubution of the lower Carboniferous culm and Carboniferous limestone facies in the North German Basin—derived from magnetotelluric soundings. Z dt Ges Geowiss 156:323–339

    Google Scholar 

  • Inselmann R (1985) Dichte-Messungen in der Bundesrepublik Deutschland. Erdöl-Erdgas 101(3):76–78

    Google Scholar 

  • Kuder J (2002) 3D Schwerefeldmodellierung zur Erfassung des tiefen Untergrundes im Nordost-Deutschen Becken. Doctoral Thesis FB Geowissenschaften FU Berlin http://www.diss.fu-berlin.de/2002/139

  • Ludwig JW, Nafe JE, Drake CL (1970) Seismic refraction. In: The sea Bd 4. Wiley, New York, pp 53–84

  • Nafe JE, Drake CL (1963) Physical properties of marine sediment. In: The sea Bd 3. New York, pp 784–815

  • Pašteka R, Richter P (2002) A simple approach to regularised gradients calculation in gravimetry and magnetometry. Extended abstracts from 63rd EAGE Conference EAGE 64th conference and exhibition, Firenze, p 118

  • Pašteka R, Richter P (2005) Improvement of the Euler deconvolution algorithm by means of the introduction of regularized derivatives. Geophys Geod 35(1):19–32

    Google Scholar 

  • Petmecky S, Meier L, Reiser H, Littke R (1999) High thermal maturity in the Lower Saxony Basin: intrusion or deep burial? Tectonophysics 304:317–344

    Article  Google Scholar 

  • Reid AB, Allsop JM, Granser H, Millet AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55:80–91

    Article  Google Scholar 

  • Scheibe R, Seidel K, Vormbaum M, Hoffmann N (2005) Magnetic and gravity modelling of the crystalline basement in the North German Basin. Z dt Ges Geowiss 156:291–298

    Google Scholar 

  • Schmidt S, Götze HJ (1999) Integration of data constraints and potential field modelling—an example from southern Lower Saxony, Germany. Phys Chem Earth (A) 24(3):191–196

    Article  Google Scholar 

  • Senglaub Y, Littke R and Brix MR (2005) Numerical modelling of burial and temperature history as an approach for an alternative interpretation of Bramsche anomaly Lower Saxony Basin. Int J. Earth Sci (Geol. Rundschau). doi:10.1007/s0051-005-0008-z

  • Sobolev S, Babeyko AY (1994) Modeling of mineralogical composition, density and elastic wave velocities in anhydrous magmatic rocks. Surv Geophys 15:515–544

    Article  Google Scholar 

  • Thompson DT (1982) EULDPH A new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47:31–37

    Article  Google Scholar 

Download references

Acknowledgments

The work presented here is part of the project “Intrusion vs. inversion at the rim of the NWGB: the gravity high of Bramsche revisited. 3D structural modelling by the aid of the Digital Tectonic Atlas” (GO 380/23-1) funded by the Deutsche Forschungsgemeinschaft as part of the priority program SPP1135. We thank the section “Seismik und Potentialverfahren” of the GGA (Hannover) for providing gravity and magnetic data and our colleagues from SPP1135 for discussions and ongoing interest. We thank B. Meurers (Vienna, Austria) for his useful comments and suggestions, and Andrea Lippmann for initial preparation of data sets at the beginning of this project. R. Pašteka expresses thanks for financial support from the Slovak Ministry of Education (projects APVT-51-002804 and VEGA 1/3066/06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filiz Bilgili.

Electronic supplementary material

Below is the link to the electronic supplementary material.

531_2007_267_MOESM1_ESM.tif

Fig. A-1: Model I. Left: Map view of measured and modelled Bouguer gravity. Right: statistics for the difference between measured and modelled gravity. The upper part shows a map of the differences between the measured and the calculated anomaly (residual map) and the lower part shows a histogram of these differences, their standard deviation (6.91×10-5 m/s2) and the correlation coefficient between both fields (0.67). (TIF 17.5 mb)

531_2007_267_MOESM2_ESM.tif

Fig. A-2: Model II. Left: Map view of measured and modelled Bouguer gravity. Right: statistics for difference between measured and modelled gravity (residual map, histogram, correlation coefficient of 0.55, standard deviation of 7.85×10-5 m/s2). (TIF 2.73 mb)

531_2007_267_MOESM3_ESM.tif

Fig. A-3: Model III. Left: Map view of measured and modelled Bouguer gravity. Right: statistics for difference between measured and modelled gravity (residual map, histogram, correlation coefficient of 0.85 and standard deviation of 4.85×10-5 m/s2). (TIF 2.74 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilgili, F., Götze, HJ., Pašteka, R. et al. Intrusion versus inversion—a 3D density model of the southern rim of the Northwest German Basin. Int J Earth Sci (Geol Rundsch) 98, 571–583 (2009). https://doi.org/10.1007/s00531-007-0267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0267-y

Keywords

Navigation