Skip to main content
Log in

Inheritance vs. neoformation of kaolinite during lateritic soil formation: A case study in the middle Amazon basin

  • Published:
Clays and Clay Minerals

Abstract

The tropical weathering of sedimentary kaolin deposits from the plateaux surrounding Manaus (Alter do Chao formation, Amazon basin, Brazil) leads to the in situ formation of thick kaolinitic soils. The structural changes of kaolinite have been investigated quantitatively by infrared spectroscopy and electron paramagnetic resonance. Both techniques consistently show that each sample contains two types of kaolinite in various proportions. The progressive decrease in kaolinite order from the bottom to the top of the profile results from the gradual replacement of an old population of well-ordered kaolinite, typical of the underlying sedimentary kaolin, by a more recent generation of poorly ordered soil kaolinite. The vertical pattern of kaolinite replacement differs from that of the transformation of Fe oxides and oxyhydroxides previously observed in the same profile. The inherited fraction of well-ordered kaolinite ranges from 60% at a depth of 9 m to 30% in the upper levels of the soil. The persistence of sedimentary kaolinite in the upper horizons suggests that the rate of kaolinite transformation is relatively slow at the time scale of lateritic soil formation. Kaolinite inheritance unlocks the lateritic record of past weathering conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artioli, G., Bellotto, M., Gualtieri, A. and Pavese, A. (1995) Nature of structural disorder in natural kaolinites: a new model based on computer simulation of powder diffraction data and electrostatic energy calculation. Clays and Clay Minerals, 43, 438–445.

    Article  Google Scholar 

  • Balan, E., Allard, T., Boizot, B., Morin, G. and Muller, J.-P. (1999) Structural Fe3+ in natural kaolinites: New insights from electron paramagnetic resonance spectra fitting at X and Q-band frequencies. Clays and Clay Minerals, 47, 605–616.

    Article  Google Scholar 

  • Balan, E., Allard, T., Boizot, B., Morin, G. and Muller, J.-P. (2000) Concentration of paramagnetic structural Fe(+III) in natural kaolinites. Clays and Clay Minerals, 48, 439–445.

    Article  Google Scholar 

  • Balan, E., Saitta, A.M., Mauri, F. and Calas, G. (2001) First-principles modeling of the infra-red spectrum of kaolinite. American Mineralogist, 86, 1321–1330.

    Article  Google Scholar 

  • Balan, E., Allard, T., Fritsch, E., Sélo, M., Falguères, C., Chabaux, F., Pierret, M.-C. and Calas, G. (2005a) Formation and evolution of lateritic profiles in the middle Amazon basin: Insights from radiation-induced defects in kaolinite, Geochimica et Cosmochimica Acta, 69, 2193–2204.

    Article  Google Scholar 

  • Balan, E., Lazzeri, M., Saitta, A.M., Allard, T., Fuchs, Y. and Mauri, F. (2005b) First-principles study of OH stretching modes in kaolinite, dickite and nacrite. American Mineralogist, 90, 50–60.

    Article  Google Scholar 

  • Bookin, A.S., Drits, V.A., Plançon, A. and Tchoubar, C. (1989) Stacking faults in kaolin-group minerals in the light of real structural features. Clays and Clay Minerals, 37, 297–307.

    Article  Google Scholar 

  • Brindley, G.W., Kao, C.-C., Harrison, J.L., Lipsicas, M. and Raythatha, R. (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays and Clay Minerals, 34, 239–249.

    Article  Google Scholar 

  • Delineau, T., Allard, T., Muller, J-P., Barres, O., Yvon, J. and Cases, J.-M. (1994) FTIR reflectance vs. EPR studies of structural iron in kaolinites. Clays and Clay Minerals, 42, 308–320.

    Article  Google Scholar 

  • Farmer, V.C. (1974) The Infrared Spectra of Minerals. Mineralogical society, London.

    Book  Google Scholar 

  • Fritsch, E., Montes-Lauar, C.R., Boulet, R., Melfi, A.J., Balan, E. and Magat, Ph. (2002) Lateritic and redoximorphic features in fractured soils and sediments of the Manaus plateaus, Brazil. European Journal of Soil Science, 53, 203–218.

    Article  Google Scholar 

  • Fritsch, E., Morin, G., Bedidi, A., Bonnin, D., Balan, E., Caquineau, S. and Calas, G. (2005) Transformation of haematite and Al-poor goethite to Al-rich goethite and associated yellowing in a ferralitic clay soil profile of the middle Amazon basin (Manaus, Brazil). European Journal of Soil Science, 56, 575–588.

    Article  Google Scholar 

  • Giese, R.F., Jr. (1988) Kaolin minerals: structures and stabilities. Pp. 29–66 in: Hydrous Phyllosilicates (Exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, vol. 19. Mineralogical Society of America, Washington, D.C.

    Chapter  Google Scholar 

  • Giral-Kacmarcik, S., Savin, S.M., Nahon, D.B., Girard, J.-P., Lucas, Y. and Abel, L. (1998) Oxygen isotope geochemistry of kaolinite in laterite-forming processes, Manaus, Amazonas, Brazil. Geochimica et Cosmochimica Acta, 62, 1865–1879.

    Article  Google Scholar 

  • Girard, J.-P., Freyssinet, Ph. and Chazot, G. (2000) Unraveling climatic changes from intraprofile variation in oxygen and hydrogen isotopic compositions of goethite and kaolinite in laterites: An integrated study from Yaou, French Guiana. Geochimica et Cosmochimica Acta, 64, 409–426.

    Article  Google Scholar 

  • Iriarte, I., Petit, S., Javier Huertas, F., Fiore, S., Grauby, O., Decarreau, A. and Linares, J. (2005) Synthesis of kaolinite with a high level of Fe3+ for Al substitution. Clays and Clay Minerals, 53, 1–10.

    Article  Google Scholar 

  • Kogure, T. and Inoue, A. (2005) Determination of defect structure in kaolin minerals by high-resolution transmission electron microscopy. American Mineralogist, 90, 85–89.

    Article  Google Scholar 

  • Lucas, Y., Boulet, R. and Chauvel, A. (1990) In situ genesis of stone lines. Demonstrative example from a lateritic cover in Brazilian Amazonia. Comptes Rendus de l’Académie des Sciences de Paris, 311, 713–718.

    Google Scholar 

  • Lucas, Y., Luizão, F.J., Chauvel, A., Rouiller, J. and Nahon, D. (1993) The relation between biological activity of the rain forest and mineral composition of soils. Science, 260, 521–523.

    Article  Google Scholar 

  • Lucas, Y., Nahon, D., Cornu, S. and Eyrolle, F. (1996) Genèse et fonctionnement des sols en milieu équatorial. Comptes Rendus de l’Académie des Sciences de Paris, 322, 1–16.

    Google Scholar 

  • Mehra, O.P. and Jackson, M.L. (1960) Fe oxide removal from soil and clays by a dithionite-citrate system buffered with sodium carbonate. Clays and Clay Minerals, 7, 317–327.

    Article  Google Scholar 

  • Muller, J.P. and Bocquier, G. (1987) Textural and mineralogical relationships betweeen ferruginous nodules and surrounding clayey matrices in a laterite from Cameroon. Pp. 186–196 in: Proceedings of the International Clay Conference, Denver, 1985 (L.G. Schultz, H. van Olphen and F.A. Mumpton, editors). The Clay Minerals Society, Bloomington, Indiana.

    Google Scholar 

  • Muller, J.P. and Calas G. (1993) Mn2+-bearing kaolinites from lateritic weathering profiles: geochemical significance. Geochimica et Cosmochimica Acta, 57, 1029–1037.

    Article  Google Scholar 

  • Petit, S. and Decarreau, A. (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites. Clay Minerals, 25, 181–196.

    Article  Google Scholar 

  • Plançon, A., Giese, R.F., Snyder, R., Drits, V.A. and Bookin, A.S. (1989) Stacking faults in the kaolin-group minerals: The defect structure of kaolinite. Clays and Clay Minerals, 37, 203–210.

    Article  Google Scholar 

  • Prost, R., Damene, A., Huard, E., Driard, J. and Leydecker, J.P. (1989) Infrared study of structural OH in kaolinite, dickite, nacrite and poorly crystalline kaolinite at 5 to 600 K. Clays and Clay Minerals, 37, 464–468.

    Article  Google Scholar 

  • Stone, W.E.E. and Torres-Sanchez, R.M. (1988) Nuclear magnetic resonance spectroscopy applied to minerals. Part 6. Structural iron in kaolinites as viewed by proton magnetic resonance. Journal of the Chemical Society, Faraday Transactions I, 84, 117–132.

    Article  Google Scholar 

  • Tardy, Y. (1993) Pétrologie des Latérites et des Sols Tropicaux. Masson, Paris.

    Google Scholar 

  • Tardy, Y. and Roquin, C. (1998) Dérive des Continents. Paléoclimats et Altérations Tropicales. Editions BRGM, Orléans, France, 469 pp.

    Google Scholar 

  • Thiry, M. (2000) Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth-Science Reviews, 49, 201–221.

    Article  Google Scholar 

  • Varajão, A.F.D.C., Gilkes, R.J. and Hart, R.D. (2001) The relationships between kaolinite crystal properties and the origin of materials for a brazilian kaolin deposit. Clays and Clay Minerals, 49, 44–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Balan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balan, E., Fritsch, E., Allard, T. et al. Inheritance vs. neoformation of kaolinite during lateritic soil formation: A case study in the middle Amazon basin. Clays Clay Miner. 55, 253–259 (2007). https://doi.org/10.1346/CCMN.2007.0550303

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2007.0550303

Key Words

Navigation