Skip to main content
Log in

Altered volcanic ash as an indicator of marine environment, reflecting pH and sedimentation rate — Example from the Ordovician Kinnekulle bed of Baltoscandia

  • Published:
Clays and Clay Minerals

Abstract

The composition of altered volcanic ash of the Late Ordovician Kinnekulle bed was studied in geological sections of the Baltic Paleobasin. The composition of altered ash varies with paleosea depth from northern Estonia to Lithuania. The ash bed in shallow shelf limestones contains an association of illite-smectite (I-S) and K-feldspar, with the K2O content ranging from 7.5 to 15.3%. The limestone in the transition zone between shallow- and deep-shelf environments contains I-S-dominated ash with K2O content from 6.0 to 7.5%. In the deep-shelf marlstone and shale, the volcanic ash bed consists of I-S and kaolinite with a K2O content ranging from 4.1 to 6.0%. This shows that authigenic silicates from volcanic ash were formed during the early sedimentary-diagenetic processes. The composition of the altered volcanic ash can be used as a paleoenvironmental indicator showing the pH of the seawater or porewater in sediments as well as the sedimentation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bearman, G. (editor) (2001) Ocean Chemistry and Deep Sea Sediments. The Open University, Milton Keynes and Butterworth-Heinemann, UK, 134 pp.

    Google Scholar 

  • Bergström, S.M., Huff, W.D., Kolata, D.R. and Bauert, H. (1995) Nomenclature, stratigraphy, chemical fingerprinting and areal distribution of some Middle Ordovician K-bentonites in Baltoscandia. Geologiska Föreningens Förhandlingar, 117, 1–13.

    Google Scholar 

  • Bergström, S.M., Huff, W.D., Kolata, D.R., Yost, D.A. and Hart, Ch. (1997) A unique Middle Ordovician K-bentonite succession at Röstanga, S. Sweden. Geologiska Föreningens Förhandlingar, 119, 231–244.

    Google Scholar 

  • Berry, W.B.N., Wilde, P. and Quinby-Hunt, M.S. (1989) Palaeozoic (Cambrian through Devonian) anoxitropic biotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 74, 3–13.

    Article  Google Scholar 

  • Bohor, B.F. and Triplehorn, D.M. (1993) Tonsteins: Altered volcanic-ash layers in coal bearing sequences. Geological Society of America Special Paper, 285, 44 pp.

  • Brusewitz, A.M. (1986) Chemical and physical properties of Paleozoic potassium bentonites from Kinnekulle, Sweden. Clays and Clay Minerals, 34, 442–454.

    Article  Google Scholar 

  • Brusewitz, A.M. (1988) Asymmetric zonation of a thick Ordovician K-bentonite bed at Kinnekulle, Sweden. Clays and Clay Minerals, 36, 349–353.

    Article  Google Scholar 

  • Byström, A.M. (1956) Mineralogy of the Ordovician bentonite beds at Kinnekulle, Sweden. Sveriges Geologiska Undersökning, Ser. C, nr. 540, 1–62.

  • Chamley, H. (1994) Clay mineral diagenesis. Pp. 161–188 in: Quantitative Diagenesis: Recent Developments and Applications to Reservoir Geology. (A. Parker and B.W. Sellwood, editors). NATO ASI Series C 453, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Elliott, W.C. and Aronson, J.L. (1987) Alleghanian episode of K-bentonite illitization in the southern Appalachian basin. Geology, 15, 735–739.

    Article  Google Scholar 

  • Garrels, R.M. and Christ, C.L. (1965) Solutions, Minerals and Equilibria. Harper and Row, New York, 335 pp.

    Google Scholar 

  • Govindaraju, K. (1995) 1995 working values with confidence limits for twenty six CRPG, ANRT and IWG-GIT geostandards. Geostandards Newsletter, 19, Special Issue, 1–32.

    Article  Google Scholar 

  • Grim, R.E. and Güven, N. (1978) Bentonites, Geology, Mineralogy, Properties and Uses. Developments in Sedimentology 24, Elsevier, Amsterdam, 256 pp.

  • Hay, R.L., Lee, M., Kolata, D., Matthews, J.C. and Morton, J.P. (1988) Episodic potassic diagenesis of Ordovician tuffs in the Missisipi Valley area. Geology, 16, 743–747.

    Article  Google Scholar 

  • Helgeson, H.C. and Mackenzie, F.T. (1970) Silicate-sea water equilibria in the ocean system. Deep-Sea Research, 17, 877–892.

    Google Scholar 

  • Hints, O., Kallaste, T. and Kiipli, T. (1997) Mineralogy and micropalaeontology of the Kinnekulle altered volcanic ash bed (Ordovician) at Pääsküla, North Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 46, 107–118.

    Google Scholar 

  • Hints, R., Kirsimäe, K., Somelar, P., Kallaste, T. and Kiipli, T. (2006) Chloritization of Late Ordovician K-bentonites from the northern Baltic palaeobasin — influence from source material or diagenetic environment. Sedimentary Geology, 191, 55–66.

    Article  Google Scholar 

  • Huff, W.D., Kolata, D.R., Bergström, S.M. and Zhang, Y.-S. (1996) Large-magnitude Middle Ordovician volcanic ash falls in North America and Europe: dimensions, emplacement and post emplacement characteristics. Journal of Volcanology and Geothermal Research, 73, 285–301.

    Article  Google Scholar 

  • Huff, W.D., Müftüoglu, E., Kolata, D.R. and Bergström, S.M. (1999) K-bentonite bed preservation and its event stratigraphic significance. Acta Univerisatis Carolinae-Geologica, 43, 491–493.

    Google Scholar 

  • Huff, W.D., Bergström, S.M., Kolata, D.R. and Kirsimäe, K. (2002) K-bentonite mineralogy and geochemistry. Pp. 12–17 in: Soovälja (K-1) drill core, Estonian geological sections (A. Põldvere, editor). Geological Survey of Estonia, Bulletin 4.

  • Jaanusson, V. (1995) Confacies differentiation and upper Middle Ordovician correlation in the Baltoscandian basin. Proceedings of the Estonian Academy of Sciences, Geology, 44, 73–86.

    Google Scholar 

  • Kastner, M. (1971) Authigenic feldspars in carbonate rocks. American Mineralogist, 56, 1403–1442.

    Google Scholar 

  • Kastner, M. and Siever, R. (1979) Low temperature feldspars in sedimentary rocks. American Journal of Science, 279, 435–479.

    Article  Google Scholar 

  • Kastner, M., Keene, J.B. and Gieskes, J.M. (1977) Diagenesis of siliceous oozes — I. Chemical controls on the rate of opal-A to opal-CT transformation — an experimental study. Geochimica et Cosmochimica Acta, 41, 1041–1059.

    Article  Google Scholar 

  • Kiipli, T. (1983) On the genesis of Ordovician and Silurian dolomites at the contact with Devonian deposits. Proceedings of the Estonian Academy of Sciences, Geology, 32, 110–117 (in Russian).

    Google Scholar 

  • Kiipli, T. and Kallaste, T. (2002a) Correlation of Telychian sections from shallow to deep sea facies in Estonia and Latvia based on the sanidine composition of bentonites. Proceedings of the Estonian Academy of Sciences, Geology, 51, 143–156.

    Google Scholar 

  • Kiipli, T. and Kallaste, T. (2002b) Characteristics of volcanism. Pp. 17–21 in: Soovälja (K-1) drill core, Estonian geological sections (A. Põldvere, editor). Geological Survey of Estonia, Bulletin 4.

  • Kirsimäe, K., Kalm, V. and Jørgensen, P. (1999) Diagenetic transformation of clay minerals in Lower Cambrian argillaceous sediments of North Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 48, 15–34.

    Google Scholar 

  • Kirsimäe, K., Gorokhov, I.M., Kallaste, T., Kiipli, T. and Kikas, R. (2002) Illite-smectite diagenesis of Ordovician K-bentonites of the Baltic basin: implications for basin development. Pp. 84–85 in: The Fifth Baltic Stratigraphical Conference, Extended Abstracts (J. Satkunas and J. Lazauskiene, editors). Vilnius.

  • Lapinskas, P.P. (1965) Lower Silurian metabentonites in Lithuania. Pp. 49–63 in: Geology and Oil Reservoirs in the Southern Baltics. Institute of Geology, Vilnius (in Russian).

    Google Scholar 

  • Lashkovas, J. (2000) The Sedimentation Environments of the Ordovician Basin in the South-western margin of the East European Platform and Lithogenesis of Deposits. Institute of Geology, Vilnius, 314 pp.

    Google Scholar 

  • Lowenstein, T.K., Hardie, L.A., Timofeeff, M.N. and Demicco, R.V. (2003) Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology, 31, 857–860.

    Article  Google Scholar 

  • Männik, P. and Viira, V. (1990) Conodonts. Pp. 84–89 in: Field meeting, Estonia 1990. An Excursion guidebook (D. Kaljo and H. Nestor, editors). Tallinn.

  • Min, K., Renne, P.R and Huff, W.D. (2001) 40Ar/39Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia. Earth and Planetary Science Letters, 185, 121–134.

    Article  Google Scholar 

  • Moore, D.M. and Reynolds, R.C., Jr. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd edition. Oxford University Press, Oxford, UK, 378 p.

    Google Scholar 

  • Nemliher, R. and Ainsaar, L. (2002) Use of K-bentonite beds as time-planes in sequence stratigraphic analyses of Caradoc (Upper Ordovician) carbonate sedimentation in Estonia. Pp. 144–146 in: The Fifth Baltic Stratigraphical Conference, Extended Abstracts (J. Satkunas and J. Lazauskiene, editors). Vilnius.

  • Nõlvak, J., Hints, O. and Männik, P. (2006) Ordovician timescale in Estonia: recent developments. Proceedings of the Estonian Academy of Sciences, Geology, 55, 95–108.

    Google Scholar 

  • Orville, P.M. (1967) Unit cell parameters of the microcline—low-albite and the sanidine—high albite solid solution series. American Mineralogist, 52, 55–86.

    Google Scholar 

  • Park, K. (1968) Seawater hydrogen-ion concentration: vertical distribution. Science, 162, 357–358.

    Article  Google Scholar 

  • Plançon, A. and Drits, V.A. (2000) Phase analysis of clays using an expert system and calculation programs for X-ray diffraction by two- and three-component mixed-layer minerals. Clays and Clay Minerals, 48, 57–62.

    Article  Google Scholar 

  • Põlma, L. (1982) Comparative lithology of the Ordovician carbonate rocks in the Northern and Middle East Baltic. Valgus, Tallinn, 164 pp. (in Russian).

    Google Scholar 

  • Railsback, L.B., Ackerly, S.C., Anderson, Th.F. and Cisne, J.L. (1990) Palaeontological and isotope evidence for warm saline deep waters in Ordovician oceans. Nature, 343, 156–159.

    Article  Google Scholar 

  • Reynolds, R.C., Jr. (1985) NEWMOD®, A computer program for the calculation of one-dimensional diffraction patterns of mixed-layer clays. R.C. Reynolds, Jr., 8 Brook Drive, Hanover, NH 03755, USA.

    Google Scholar 

  • Sheppard, R.A. and Gude, A.J. (1968) Distribution and genesis of authigenic silicate minerals in tuffs of Pleistocene lake Tecopa, Inyo County, California. US Geological Survey Professional Paper, 597, 38 pp.

  • Sheppard, R.A. and Gude, A.J. (1973) Zeolites and associated authigenic silicate minerals in tuffaceous rocks of the Big Sandy Formation, Mohave County, Arizona. US Geological Survey Professional Paper, 830, 36 pp.

  • Siever, R. and Woodford, N. (1973) Sorption of silica by clay minerals. Geochimica et Cosmochimica Acta, 37, 1851–1880.

    Article  Google Scholar 

  • Snäll, S. (1977) Silurian and Ordovician bentonites of Gotland (Sweden). Acta Universitatis Stockholmiensis, Stockholm Contributions in Geology, XXXI: 1, 80 pp.

  • Środoń, J. and Clauer, N. (2001) Diagenetic history of Lower Palaeozoic sediments in Pomerania (northern Poland) traced across the Teisseyre-Tornquist tectonic zone using mixed-layer illite-smectite. Clay Minerals, 36, 15–27.

    Article  Google Scholar 

  • Taylor, J.C. (1991) Computer programs for standardless quantitative analysis of minerals using full powder diffraction profile. Powder Diffraction, 6, 2–9.

    Article  Google Scholar 

  • Thorslund, P. (1947) Om ordovicisk bentonit på Bornholm. Meddelelser fra Dansk Geologisk Forening, Bd. 11, 172–178 (in Danish).

    Google Scholar 

  • Velde, B. (1985) Clay minerals. A Physico-Chemical Explanation of their Occurrence. Developments in Sedimentology, 40, Elsevier, Amsterdam-Oxford-New York-Tokyo, 425 pp.

  • Vingisaar, P.A. and Murnikova, T. (1973) New data on mineralogy of some Lower Caradocian metabentonites of Estonia. Proceedings of the Estonian Academy of Sciences, Chemistry-Geology, 22, 237–243 (in Russian).

    Google Scholar 

  • Vingisaar, P.A. and Taalmann, V. (1974) Review of dolomitization of Lower Palaeozoic carbonate rocks in Estonia. Proceedings of the Estonian Academy of Sciences, Chemistry-Geology, 23, 149–158 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarmo Kiipli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiipli, T., Kiipli, E., Kallaste, T. et al. Altered volcanic ash as an indicator of marine environment, reflecting pH and sedimentation rate — Example from the Ordovician Kinnekulle bed of Baltoscandia. Clays Clay Miner. 55, 177–188 (2007). https://doi.org/10.1346/CCMN.2007.0550207

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2007.0550207

Key Words

Navigation